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“The Game” is the title of a neat cooperative card
game designed by Steffen Benndorf and published by
Nürnberger-Spielkarten-Verlag [1]. In this paper, we
describe The Game, provide a number of generaliza-
tions, and discuss the computational complexity of
winning them, provided a given input card distribu-
tion.

The Game requires players to cooperatively dis-
card all cards in a deck of 100 uniquely numbered
cards into a set of piles that follows certain rules. In
the original, cards placed on a given pile must be
either monotonically increasing or decreasing, with
the exception that any card exactly 10 away from the
top card in the pile may also be played. These rules
define a valid placement graph for each pile which
we call a transition graph. The players win if they
can place all the cards in turn onto piles in a way
that is consistent with each pile’s transition graph.

We consider a one-player version of The Game
that is offline, i.e., the order of the cards in the deck
is known. We will generalize this game for variable
deck size n, variable hand size h, variable play num-
ber p, with a variable number of discard piles k, each
having a transition graph that may be any general
directed graph. We show that if either the hand size
or the number of piles is non-constant, then deciding
whether one can win The Game is NP-Complete.

We begin with some definitions. A Card is a num-
ber in [1..n]; cards are unique. A Deck is a permuta-
tion on the cards from which we draw. The Hand is
a temporary storage in which we place cards drawn
from the Deck. Hand Size is the max number of
cards in the Hand. The Play Number is the min
number of cards that can leave the Hand per turn.
A Pile is a container into which we can place cards
from the Hand. A Pile Transition Graph is a graph
on vertices [0..n], with 0 referencing no card, and
vertex i corresponding to card i. Edge (i, j) says
that card j may be placed on top of card i.

Every turn, we remove at least or exactly the
Play Number of cards from the Hand and place
these cards one at a time onto piles on which they
can legally be placed. Then we replenish the Hand
to the Hand Size from the Deck. The Game ends
if no more actions can be made. The player wins if
every card is in a pile and the decision problem for
The Game is then: can the player win for a given
input? This decision problem is in NP, certified by
a play order.
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Theorem 1 The Game can be decided in polyno-
mial time if the hand size and the number of piles
are constant.

Proof. For a constant number of Piles and a con-
stant Hand Size, the game state graph is polyno-
mial in size O(nh+k+1), so we can easily determine
whether a path exists from the starting state to any
win state. Here state encodes the hand contents, the
top card of each pile, and the progress through the
deck. �

When either hand size or number of piles is not
constant, and Pile Transition Graphs are allowed to
encode general graphs provided as input, the prob-
lem becomes hard.

Theorem 2 The Game is NP-Complete when hand
size is a constant fraction of deck size, allowing gen-
eral transition graphs for one discard pile.

Proof. For one pile with a general directed transi-
tion graph and hand size that is a constant fraction
r of deck size (or part of the input), we can reduce
from Hamiltonian Path. We construct a transi-
tion graph as follows. Let the Hand Size be the size
n of the input graph, and fix the Deck size to n/r.
Let the transition graph on vertices [1..n/r] be our
Hamiltonian Path instance with vertex 1 the start
vertex and vertex n the end vertex. Add edge (0, 1)
and edge (i, i+ 1) for n ≤ i < n/r. Set the Deck to
be [1..n] in that order. Analysis is straightforward
and not detailed here. �

Theorem 3 The Game is NP-Complete for con-
stant hand size and play number, allowing general
transition graphs for many piles.

This can be proved via a chain of reductions
starting from the following NP-Complete problem
(from [2]):

[Swap or Not Reachability] Given permuta-
tions σ1, σ2, . . ., σk, and T on n elements such that
σi is a swap of some two elements and T is an arbi-
trary permutation, decide whether there exists a bit-

string b1b2 . . . bk such that σbk
k ◦σ

bk−1

k−1 ◦. . .◦σ
b2
2 ◦σ

b1
1 =

T .
We reduce this problem to the following more gen-

eral problem:
[DAG Path Cover] Given a DAG and a list of

pairs of vertices (si, ti), decide whether there exists
disjoint paths from each si to its corresponding ti
such that each vertex of the DAG exists in one of
the paths.
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Lemma 4 DAG Path Cover is NP-Complete.

Proof. Given a Swap or Not Reachability instance
S, we construct an instance of DAG Path Cover D
with m = n(k + 1) vertices and n paths. Let (i, j)
be a vertex of the DAG for i ∈ {1, . . . , n} and j ∈
{0, . . . , k}. We say that vertex (i, j) is in column i
on level j. For i ∈ {1, . . . , n}, let si be vertex (i, 0)
and ti be vertex (T (i), k). For i ∈ {1, . . . , n} and
j ∈ {0, . . . , k − 1}, a vertex (i, j) has an outgoing
edge to (i′, j + 1) if i′ = σj+1(i) or i′ = i.

Given a solution to S consisting of bit-string

b1b2 . . . bk where σbk
k ◦ σ

bk−1

k−1 ◦ . . . ◦ σ
b2
2 ◦ σ

b1
1 = T , we

construct a solution to D. For p ∈ {1, . . . , n}, con-
sider the sequence of vertices Sp of the form (ij , j)

for j ∈ {1, . . . , n} where transformation Tj = σ
bj
j ◦

σ
bj−1

j−1 ◦ . . . ◦ σ
b1
1 maps p to ij . The first vertex in Sp

is (p, 0) = sp since T0 is the identity transformation.
Similarly, the last vertex of Sp is tp since Tk = T .

Since Tj+1 = σ
bj+1

j+1 ◦ Tj , there exists an edge from
(Tj(p), j) to (Tj+1(p), j+ 1) by construction. There-
fore Sp is a path from sp to tp. Two paths Sp and
Sp′ intersect only if (Tj(p), j) = (Tj(p

′), j). Since
Tj is a permutation on the elements, Tj(p) 6= Tj(p

′)
for p 6= p′ so the paths are disjoint. Furthermore,
since each path starts on level 0 and ends on level
k + 1, each path contains one vertex in every level.
Because there are exactly n vertices per level, the
disjoint paths Sp cover every vertex and comprise a
solution to D.

Given a solution to D, a set of paths Sp, we con-
struct a solution to S. By the same argument above,
each Sp contains one vertex from each level. Con-
sider level j. Let bj be zero if every path Sp has
vertices in the same column at levels j and j+1; oth-
erwise, bj = 1. We claim that b1b2 . . . bk is a solution
to S. Define Tj with respect to these bj as above.
We prove by induction that path Sp contains vertex
(Tj(p), j). The first vertex of Sp is (p, 0) as desired
since T0 is the identity transformation. Then assume

(Tj−1(p), j − 1) is on Sp. Note that Tj = σ
bj
j ◦ Tj−1.

There are three cases.

1. Case when bj = 0. Then Sp passes through
(Tj−1(p), j) and Tj = Tj−1, so Sp contains ver-
tex (Tj(p), j) as desired.

2. Case when bj = 1 and σj does not swap element
i = Tj−1(p). The possible outgoing edges from
(i, j − 1) are to (i, j) and (σj(i), j), but since
σj(i) = i these are the same edge. Since (i, j−1)
is on Sp with unique outgoing edge to (σj(i), j),
then (σj(i), j) must also be on the path. But
σj(i) = Tj(p), so Sp contains vertex (Tj(p), j)
as desired.

3. Case when bj = 1 and σj swaps element i =
Tj−1(p). The argument from the previous case
shows that at most two vertices on level j − 1

have two outgoing edges, so at most two edges
change column from level j − 1 to j. Since
bj = 1, some path must change columns be-
tween levels j − 1 and j. In fact at least two
must change columns or else two paths would
be in the same column at level j and would not
be disjoint. Because there are at most two edges
that change column from level j − 1 to j, every
such edge must be traversed by some path.

The edge from (i, j − 1) to (σj(i), j) is in the
graph by construction. Furthermore σj(i) 6= i
because σj swaps element i. Thus this edge
must be contained in some path. This path
must be Sp since it contains vertex (i, j − 1).
Therefore Sp contains vertex (σj(i), j). But
σj(i) = Tj(p), so Sp contains vertex (Tj(p), j)
as desired.

By induction, path Sp contains vertex (Tj(p), j)
for all j ∈ {0, . . . , k} and p ∈ {1, . . . , n}. Then
for j = k, Sp contains vertex tp = (T (p), k), so
since only one vertex in each level is in each path,
(Tk(p), k) = (T (p), k). So Tk(p) = T (p) for all p.

Thus T = Tk = σbk
k ◦σ

bk−1

k−1 ◦ . . .◦σ
b2
2 ◦σ

b1
1 as desired.

Specifying paths that satisfy the requirements can
be described in polynomial time, so the problem is
in NP. �

Proof of this Lemma is omitted for brevity. We
then use this lemma to prove the preceding theorem:

Proof. Given a DAG Path Cover instance D,
with DAG G on m vertices requiring k paths, we
construct an instance I of The Game with hand size
h, play number p, k piles, and n = (h − p) + m + k
cards.

The deck is given in order from 1 to n. We call
cards {1, . . . , h−p} trash, cards {h−p+1, . . . ,m−k}
cool, and cards {m − k + 1, . . . ,m} sentinel. Our
strategy will be to construct a transition graph for
each pile, each containing G as a subgraph such that
the play order on pile i contains a path in G from si
to ti.

We construct a correspondence between cool cards
and vertices of G, such that if (u, v) is an edge, then
corresponding cards cu and cv satisfy cu < cv. This
is possible using any topological sort on G. In the
transition graph for every pile, we add an edge from
card cu to cv if (u, v) is an edge of G. For pile i, we
add an edge from the empty state 0 to the card cor-
responding to vertex si, and an edge from the card
corresponding to vertex ti to sentinal card m−k+ i.
Lastly, we form a directed chain through the trash
cards starting at sentinal card m in the transition
graph of pile k. By this construction, the trash cards
can only be played after the last card in the deck.

Given a solution to D consisting of paths Sp, we
construct a solution to I. We will play all non-trash
cards in order and then all the trash cards. Assuming
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there are piles that can accept this order of cards,
this play order is possible given the deck and play
number. We now show that there always exists a
pile on to which we can place these cards. We place
cards on to piles as follows:

C1 For each cool card c corresponding to start ver-
tex si, we will place that card onto pile i. Pro-
vided the pile is empty, we will be able to place
this card.

C2 For each cool card c corresponding to non-start
vertex v, we will place c on to the card corre-
sponding to the previous vertex u along the path
containing v. Provided the card corresponding
to u is on the top of some pile, we will be able
to play c.

C3 For every sentinel card m− k + i, we will place
it onto the card corresponding to ti. Provided
the card corresponding to ti is on the top of pile
i.

C4 For every trash card c, we will place it on pile k
on top of the parent of c in the transition graph
of pile k.

Now we argue that the above placements are pos-
sible.

C1 No card in [C2], [C3], [C4] is placed on an empty
pile and no two cards in [C1] are placed onto the
same pile, so we can place cards in [C1].

C2 Because the cards corresponding to path Sj are
played in path order based on the topological
sort, no card in [C2] will be played before the
card it should be played on. Further, no two
cards are placed onto the same card, so we can
place cards in [C2]. Note that all cards corre-
sponding to vertices in path Sp are placed in
pile p by induction.

C3 Because cool cards are placed before sentinel
cards, no card in [C3] will be played before the
card it is played on. Since the card correspond-
ing to ti will be placed in pile i, we will place
the sentinel card m − k + i in the correct pile,
so we can place cards in [C3].

C4 Since card m is in [C3] and can be played, we
can play the trash cards in the order in which
they appear in the transition graph of pile k.

Thus we can play all cards, solving I. Given a
solution to I, we construct a solution to D. Consider
pile i. Card m−k+i can only be played on this pile,
and only immediately after the card corresponding
to ti. The card corresponding to si is the only card
that can be played onto pile i when it is empty. The
sequence of cards played on pile i starting with the
card corresponding to si and ending with the card

corresponding to ti will be a path in the transition
graph of pile i. The only transition in the transition
graph of pile i between cool cards and non-cool cards
is from ti, so this path is in G. No card can be placed
in two piles, so the paths are disjoint, and every card
must be placed, so the paths cover the vertices of G.
These paths comprise a solution to D.

Specifying play order and location can be de-
scribed in polynomial time, so the problem is in
NP. �

In our generalized models, we allow for transition
graphs to be general graphs, but the original game
uses only very particular transition graphs. If transi-
tion graphs are not part of the input and only depend
on the size of the deck, is The Game still NP-Hard?
We leave this question to future work.
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