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Abstract

The offset crease method is a procedure for modifying flat-foldable crease patterns in order to accom-
modate material thickness at creases. This paper analyzes the kinematic configuration space for the
family of non-spherical linkage constructed by applying the offset crease method. We provide the sys-
tem of equations that describes the parameterized configuration space of the linkage, and we visualize
the two-dimensional solution space using appropriate projections onto the five-dimensional state space.
By analyzing the projections over the space of flat-foldable crease patterns, we provide evidence that
the flat and fully-folded states generated by the offset crease method are connected in the configuration
space. We also present software for designing and constructing modified crease patterns using the offset
crease method.
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1. Introduction
Folding is a natural paradigm for manufacturing and designing shell and spatial structures. A significant
body of existing research studies the design of flat foldings from perfectly thin, zero-thickness sheets.
Such flat foldings are of particular interest due to their analysis simplicity, compactness, and deploya-
bility. However, such results are often not applicable when designing structures that must be built using
physical materials where the volume of the surface cannot safely be ignored. For example, when de-
signing a complex electric circuit with many layers of components folded on top of one another, the
components and the substrate on which they reside have thickness that must be considered and aligned.
At a larger scale, architectural and astronautical folded structures made of thick structural materials must
be handled.

Over the past few years, a number of approaches have been developed to apply the research of 2D flat
foldings to 3D materials, each with their own strengths and weaknesses. In 2015, the authors presented
a new offset crease method for creating thick versions of flat foldable crease patterns that preserves the
structure of the original crease pattern, replacing each crease with two parallel creases separated by a
designated crease width, resulting in a structure whose facets are separated from one another in the final
folded state [3]. This replacement creates difficulties at crease intersections since the offset creases will
no longer converge to a point. Material in the vicinity around each crease pattern vertex is thus discarded
to accommodate crease thickening. While this modification creates holes in the material, it introduces
extra degrees of freedom that can allow the thickened creases to fold.

While this construction guarantees both the unfolded and completely folded states of the generated
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crease pattern, these two states do not guarantee a rigid folding motion linking the two states, even if
the original input crease pattern can fold rigidly. This paper investigates the conditions under which
rigid folding can occur for foldings generated by the offset crease method. We analyze the configuration
space of four crease vertices thickened using the offset crease method, show that it is set of 2D surfaces,
and explore the space analytically and numerically. Non-spherical linkages are generally characterized
by equations that cannot be solved fully analytically. Some recent work by Chen et al. studies special
cases of a specific class of non-spherical linkage [1]. Our approach is to formulate the closure constraint
described by [5], simplify the set of equations, and analyze their properties. In the following sections,
we derive the system of equations that describes the parameterized configuration space of the linkage
formed by a four-crease, flat-foldable, single-vertex crease pattern, and we visualize the two-dimensional
solution space using appropriate projections onto the five-dimensional state space. By analyzing the
projections over the space of flat-foldable crease patterns, we provide evidence that the flat and fully-
folded states generated by the offset crease method are connected in the configuration space.

In addition, we present software that may be used to design and generate thick foldings using the offset
crease technique. The software allows the user to import their own flat foldable crease patterns and
generate thickened versions of them interactively via an online web application. We comment on the
usage and development of this software.

2. Theory
In this section, we compare the kinematics of flat-foldable, single-vertex crease patterns having exactly
four creases, with thickened versions of the crease patterns constructed using the offset crease method.

Consider a unit circle of paper with four straight line creases emanating from the center of the paper
that satisfies Kawasaki’s local flat foldability condition: the alternating sum of the cyclically ordered
sector angles formed by the creases is zero. We will call the smallest sector angle α and let β be a
sector angle adjacent to β with 0 < α ≤ β ≤ π. Choosing β from the range (0, π) and α from
the range (0,min(β, π − β)] parameterizes all non-degenerate four-crease, flat-foldable, single-vertex
crease patterns.

Number the creases such that angle α is bounded by creases c1 and c2, angle β is bounded by creases
c2 and c3, with crease c4 opposite c1. Let ui be the unit vector aligned with crease ci. Also let θi be the
sector angle between creases ci and ci+1, with the convention that i+1 and i− 1 represent the next and
previous indices in the cyclic order. In this section, index arithmetic will always be taken modulo 4.

We now model rigid folded states of the crease pattern. The kinematics of four-crease, flat-foldable,
single-vertex crease patterns is well studied [2][4]. To fold the crease pattern, paper facets rotate rigidly
around the creases. Let the turn angle φi be the angular deviation of the faces bounding crease ci, with
positive turn angle consistent with a right handed rotation around direction of the crease. A four crease
vertex has a single degree of freedom which may be parameterized by the turn angle ρ of one crease.
Let ρ equal φ1. In a rigid folding of the vertex, the turn angle at one of the creases bounding the smallest
angle α must have sign opposite from the other three angles [2]. Without loss of generality, assume c2
has opposite sign. Then the turn angles at the other creases are φ3 = φ1 and

− φ2 = φ4 = arccos

(
cos ρ+

sin2 ρ

cos ρ+ cotα cotβ + cscα cscβ

)
(1)

It will be useful to attach a local coordinate frames in order to relate different parts of the paper. See
Figure 1. When the paper is flat, we define a local coordinate frame relative to each crease, with ui
being the unit vector in the direction of crease ci, and ti being the unit vector orthogonal to ui taken
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Figure 1: Diagrams showing a linkage constructed by applying the offset crease method to a generic
four-crease, flat-foldable, single-vertex crease pattern. [Left] The crease pattern in its flat state, with
sector angles θi and crease widths wi. Local flat coordinate frames (ui, ti) are also shown, as are the
vectors vi from point pi−1 to point pi. [Right] A local cross section looking down a crease during folding
with unit vector u∗i pointing out of the page.

counter clockwise. When the paper is being folded, we will define more local coordinate frames, this
time moving with each crease. Unit vector u∗i will being in the direction of crease ci during folding,
n∗i will be the average of the normal vectors of the faces adjacent to ci, and t∗i will be the transverse
direction such that u∗i × t∗i = n∗i . Instead of relating these frames to some fixed coordinate system, we
will instead write our equations in terms of dot products between these vectors which will be agnostic
to any specific embedding.

Let us now widen each crease using the offset crease method. Let wi be the width ascribed to crease
ci. The offset crease method requires that w4, the width of the external crease, equals the sum of the
other three widths, so that w4 = w1 + w2 + w3. We construct points pi defining the intersections of
the offset creases so that each pi is distance wi/2 from crease ci and distance wi+1/2 from crease ci+1.
Of particular interest are the vectors vi = pi − pi−1 running from pi−1 to pi, because summing these
vectors defines a closure constraint that must sum to zero during folding. Note that the dot product of vi
with respect to the flat coordinate frame associated with crease ci is:

vi ·
[
ti
ui

]
=

[
wi
1
2

(
wi cos θi+wi+1

sin θi
− wi cos θi−1+wi−1

sin θi−1

) ] . (2)

Now let v∗i be the direction of vi during a folding motion. Splitting each crease into two creases means
that when the crease pattern folds, the turn angle φi at crease ci must then be split between two creases.
Choosing n∗i to be the average of adjacent face normals means if v∗i is perpendicular to n∗i , the turn angle
will be split evenly between the two split creases. Otherwise, the face created at the widen crease could
rotate around u∗i with an additional rotational degree of freedom. We call this rotation split angle ψi,
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such that:

v∗i = (vi · ui)u∗i + (vi · ti)(cos(ψi)t∗i + sin(ψi)n
∗
i ). (3)

Then the solution space of folded isometries of the thickened flat-foldable four-crease vertex is given by
the following closure constraint:

0 =
4∑
i=1

v∗i (4)

Projected onto any generic fixed reference frame, this vector equation yields three equations, with each
dependent on all four unknowns ψi for all i ∈ {1, 2, 3, 4}. However, we notice that projecting the
equation in the direction of a crease u∗i , we get an equation in only three variables as ψi drops out since
t∗i · u∗i = n∗i · u∗i = 0:

0 =

4∑
i=1

(vi · ui)(u∗i · u∗j ) + (vi · ti)
(
cos(ψi)(t

∗
i · u∗j ) + sin(ψi)(n

∗
i · u∗j )

)
(5)

As long as the no two creases are collinear in the original crease pattern which would lead to a degenerate
folding motion, choosing Equation 5 for any three j in {1, 2, 3, 4} will yield three independent equations
in four unknowns, except that each of the equations will only contain three of the unknowns. Below are
explicit values for the dot products needed:

u∗i ·


u∗i
u∗i+1

u∗i+2

u∗i+3

 =


1
cos θi
cos θi cos θi+1 − sin θi sin θi+1 cosφi+1

cos θi−1

 (6)

u∗i ·


t∗i
t∗i+1

t∗i+2

t∗i+3

 =


0

− sin θi cos
φi+1

2

−(sin θi+1 cos θi + cos θi+1 sin θi cosφi+1) cos
φi+2

2 + sin θi sinφi+1 sin
φi+2

2

sin θi−1 cos
φi−1

2

 (7)

u∗i ·


n∗i
n∗i+1

n∗i+2

n∗i+3

 =


0

sin θi sin
φi+1

2

(sin θi+1 cos θi + cos θi+1 sin θi cosφi+1) sin
φi+2

2 + sin θi sinφi+1 cos
φi+2

2

sin θi−1 sin
φi−1

2

 (8)

For example, for j = 1, Equation 5 evaluates to Equation 9 below. This equation has a particularly nice
form.

0 =
1

2
(w2 sin θ1 + w4 sin θ4 + w3 sin(θ1 + θ2))+

1

2
sin θ1 cosφ2(w2 + w3(cos θ2 − sin θ2 cot θ3)− w4 sin θ2 csc θ3)−

w2 sin θ1 cos

(
ψ2 +

φ2
2

)
+ w4 sin θ4 cos

(
ψ4 −

φ4
2

)
+

w3

(
sin θ1 sinφ2 sin

(
ψ3 +

φ3
2

)
− (cos θ1 sin θ2 + sin θ1 cos θ2 cosφ2) cos

(
ψ3 +

φ3
2

))
.

(9)
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Figure 2: Two projections of the configuration space for a fixed offset crease pattern with α = π/8 and
β = π/2. [Left] Projection onto ρ and ψ2 showing curves of constant ψ1. [Right] Projection onto ψ1

and ψ2 showing curves of constant ρ. The yellow region encloses the primary lobe which is highlighted
in more detail in Figure 3.

The other four equations have the same form, and can be obtained by permuting the indices. This
technique, formulating a vector closure condition and then projecting in directions that reduce variables
is a general technique that can be applied to the analysis of higher degree vertices. By combining
equations of this form, we can obtain a scalar equation in terms of the parameters of the problem and
our choice of any two split angles, for example ψ1 and ψ2. Combined with the fold angle ρ, we have
one constraint in three unknowns yielding generically an algebraic manifold with a two-dimensional
intrinsic dimension, and we expect the folding to have locally two degrees of freedom.

3. Analysis
Now let us visualize the configuration space for a specific crease pattern. We parameterize our test case
with α = π/8, β = π/2, w1 = w2 = w3 = 1, and w4 = 3. The left of Figure 2 shows a projection
of the configuration space onto the ψ2 × ρ torus, plotting contour lines for a range of fixed values of ψ1

between ±π at intervals of π/10, while the right shows a projection onto the ψ1 × ψ2 torus, plotting
contour lines for values of ρ between 0 and π at intervals of π/20. On the left, the center point represents
the flat folded state having zero fold angle with all split angles ψi fixed to zero. The configuration space
is rotationally symmetric around the center since our analysis is agnostic to our choice of crease pattern
orientation. The top center (and bottom center) of the plot represents the fully folded state guaranteed
by the offset-crease construction. It is the tear-dropped section of the configuration space connecting
that top and bottom that we are interested in. We will call this section the primary lobe, with the other
section being the secondary lobe.

We comment here briefly on the other sections of the configuration space. The lobes to the left and right
of the primary lobe corresponds to another folding mode in which split angles deviate quickly away from
zero. In this instance, they connect to the primary lobe only at the flat configuration. When this happens,
the folding is unable to fold fully to the 180◦ fold angle because the faces translate dramatically relative
to the original folding motion.
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Figure 3: Two projections of the primary lobe, a subset of the configuration space for a fixed offset
crease pattern with α = π/8 and β = π/2. [Left] Projection onto ρ and ψ2 showing curves of constant
ψ1. [Right] Projection onto ψ1 and ψ2 showing curves of constant ρ.

Figure 3 shows detail of the primary lobe at higher resolution. Observe that the configuration space of the
primary lobe for this crease pattern is a topological 2-sphere, with what seems to be a single not smooth
point at the flat configuration. So for this crease pattern, the flat and folded states of the modified crease
pattern are in fact connected in the configuration space by a continuum of paths around this sphere. In
fact, if we observe the purple contour line with fixed ψ1 = 0 extending from the bottom point, we can
observe that this curve represents two specific paths through the configuration space connecting the two
points.

The goal now is to see if such a path exists for any four-crease, flat-foldable, single-vertex crease pattern,
not just for this specific instance. Figure 4 plots projections of the configuration space for different
crease patterns. The horizontal distribution of the plots varies with the parameter β for values evenly
spanning the range (0, π), while the vertical distribution varies with parameter α spanning the range
(0,min(β, π − β)). Each curve represents a subset of the configuration space restricted to one split
angle being zero, ψi = 0, projected onto the torus spanning ρ, on the horizontal axes ranging from −π
to π, and ψj , on the vertical axes ranging from 0 to π. The color of the curves correspond to which
values of i and j are shown.

Looking over the range of possible values, we can make the following observations. First, we observe
that for some crease patterns, the primary and secondary lobes merge into a single connected component,
specifically for β ≥ π/2 and sufficiently large α. This feature be seen particularly in the blue, yellow,
and green curves corresponding respectively to zeroing split angles associated with creases c1, c2, and
c3. In particular, when fixing the split angle associated with any of these three angles, a path exists
between the flat and folded states that monotonically increases in ρ, though more complicated paths also
exists that do not increase monotonically in ρ.

However, observe that if the split angle of the external crease c4 is fixed at zero, the configuration space
becomes disconnected for crease patterns with α sufficiently small. This feature can be seen in the red
circular components that are incident to the fully-folded state, but not to the flat state. Thus, we cannot
always achieve a folding motion by fixing the split angle at any crease to zero; a path may not exist for
some crease patterns when the external crease split angle is fixed.
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Figure 4: Projections of the configuration space for fixed values of ψi, for different flat-foldable creases
patterns parameterized by α and β in fractions of π. Each curve represents a subset of the configuration
space restricting ψi = 0, projected onto ρ (horizontal ranging from −π to π) and ψj (vertical ranging
from 0 to π). The colors [blue, yellow, green, red] correspond to (i, j) = [(1, 2), (2, 3), (3, 4), (4, 1)]
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Figure 5: A screenshot of our offset crease implementation in action. The model shown is a traditional
bird base with uniform thickness offset.

4. Software
We wrote a program to implement the algorithm presented in [3] for generating modified offset crease
patterns from input flat-foldable crease patterns. The program was written in coffeescript and can be
found at http://jasonku.scripts.mit.edu/thick. The input is a vertex set and an ordered list of faces. The
program allows the user to adjust the distance between faces by pressing arrow keys, allowing the user
to view how the crease pattern changes in real time. Figure 5 shows a screen shot of the implementation.
For more details and access to the source, please contact the corresponding author.

5. Conclusion
This paper has provided a general technique for analyzing the configuration space for non-spherical
linkages by visualizing projections of the state space, and has applied this technique to study the config-
uration space for single vertex crease patterns generated by the offset crease method. We have provided
evidence to support that there always exist a path between the flat and fully-folded states guaranteed by
the offset crease method construction. Future work is needed in order to extend this analysis to higher
degree vertices. Further, our analysis does not forbid local binding between adjacent faces, so additional
work would be needed to characterize if and when binding could occur.
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