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Abstract

This thesis analyzes two dimensional tomographic imaging of surface objects with neg-
ligible volume, concentrating on piecewise linear surfaces similar to folded origami.
In contrast to the large number of projections usually necessary in traditional to-
mographic imaging, information is extracted directly from a small number of Radon
projections. Furthermore, piecewise linear chains are shown to be fully characterized
from just two sampled Radon projections, assuming perfect sampling resolution of
these projections.
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Chapter 1

Introduction

The process of tomographic imaging is standard in many scientific applications. Prob-

ably the largest application of tomographic imaging is in the medical field where

computed tomography or CT scans are pervasive. However, these imaging techniques

are not without their faults. CT scans require the patient to undergo considerable

exposure to x-ray radiation [18][3]. There is considerable research attempting to re-

duce the amount of radiation exposure to patients [9] as well as reduce the number

of projections needed for accurate reconstruction [14].

This thesis will focus on determining the minimum number of projections needed

to fully identify a specific class of unknown objects: sheet-like objects with negligible

volume. These objects are very sparse in three dimensions, so it is conceivable that

they could be identified from a small number of projections. Instead of analyzing

and manipulating the large number of samples necessary for traditional tomographic

reconstruction techniques, this thesis will address how one might extract information

about the unknown object from just a very small number of sample projections;

instead of thousands, we will analyze only one, two, or three.

Limiting our object space to a simplified, sparse object will allow us to theoret-

ically reconstruct these objects exactly without the need of filtering or the use of

approximations or approximate identities. This restriction can be thought of as an

academic exercise to better understand the limits of tomographic imaging and to

gain a more fundamental understanding of the Radon transform and the sinogram
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themselves.

Restricting our objects to resemble sheets may not be able to directly address the

more general problem of decreasing the number of projections needed to image a per-

son in a full body CT scan. However, this theory does have foreseeable applications.

While biological samples are not typically sheet-like nor are typically flat or piecewise

isometric, many man-made objects are.

Computed tomography is already being used for some commercial freight and

airport security to image packages with sheet-like qualities and for explosives detection

[11]. However, this imaging technique is not currently used on a large scale because

scanning for multiple projections takes time, while adding additional cameras carries

considerable cost. If we could harness some tomographic reconstruction techniques

to perform reasonable reconstruction with only two or three projections, it might be

possible to bring truly three dimensional screening into the mainstream.

A perhaps more direct application for the theory derived in this paper is to char-

acterize three dimensional folded structures. Most folded structures on a large scale

can be measured directly, so trying to characterize them using tomographic imaging

might not improve on existing techniques. However, more and more research is being

devoted to manufacturing and folding [13] three dimensional objects on the micro

and nano scales.

Current imaging techniques to characterize three dimensional micro-surfaces such

as electron beam microscopy and interferometric techniques are not suitable for truly

three dimensional objects with many layers. When trying to characterize multilayered

objects (like a crumpled ball of paper [5]) a better technique is to use tomography.

Currently, folded micro and nano-surfaces are characterized by fairly simple geometry

for which more traditional imaging techniques can be applied. However, when more

complicated and layered objects begin to be manufactured, tomographic imaging will

play a more significant role, and the theory developed in this paper can be put to use

directly.

This thesis is organized into three sections. The first section address traditional

methods of tomographic reconstruction. It briefly reviews the Radon transform,
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summarizes methods of filtered backprojection, and mentions the use of compres-

sive sensing to obtain better tomographic reconstructions for sparse objects in the

traditional tomographic framework. The second section derives a model for repre-

senting surface-like objects as a composition of infinite attenuation values. The third

section comprises the majority of the thesis. It discusses identification algorithms

for increasingly complex surface objects using a minimal number of projections with

different amounts of prior knowledge.
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Chapter 2

Tomography

Tomography is traditionally used to reconstruct three dimensional objects with finite

density from imaged projections of the object. In general, this process requires the

observer to sample a large number of projections of the object. Medical imaging for

CT scans for example traditionally require projection measurements on the order of

10,000 or more for a reasonable reconstruction [3]. Compressive sensing minimizing

total variation of the object can substantially decrease the number of required projec-

tions, but still require hundreds of projection measurements depending on the object.

We will summarize traditional tomographic reconstruction methods in this section.

2.1 Radon Transform

The general definition of a Radon transform in Rn is given as the integration of the

attenuation function µ(x) over hyperplanes 〈x,θ〉 = s parameterized by a direction

θ ∈ Sn−1 and distance from the origin s ∈ R:

Rµ(θ, s) =

∫
〈x,θ〉=s

µ(x)dx (2.1)

For a given direction θ, the Radon transform gives a one dimensional function of

s representing the integration of the space over a hyperplane perpendicular to θ.

We will denote a Radon projection as the Radon transform constrained to a specific

17



s

R2

µ(x)

θ

〈x,θ〉 = s

Figure 2-1: Geometry of the Radon transform.

direction θ as:

Rθµ(s) = Rµ(θ, s) (2.2)

2.2 Fourier Slice Theorem

Radon transforms have the nice property that they are related to the Fourier trans-

form in a specific way. Recall the definition of the Fourier transform of scalar function

f : Rn 7→ R as:

Ff(ξ) =

∫
Rn

f(x) exp{−2πi〈x, ξ〉}dx (2.3)

The Fourier Slice Theorem then states, if f is integrable on Rn and if θ is a unit

vector, then:

FRθf(s) = Ff(sθ) (2.4)

18



A derivation of this relation found in [16] is as follows:

Ff(sθ) =

∫
Rn

f(x) exp{−2πi〈x, sθ〉}dx (2.5)

=

∫
R

 ∫
〈θ,x〉=p

f(x) exp{−2πi〈x, sθ〉}dx

 dp (2.6)

=

∫
R

 ∫
〈θ,x〉=p

f(x)dx

 exp{−2πisp}dp (2.7)

=

∫
R

Rθf(p) exp{−2πisp}dp (2.8)

= FRθf(s) (2.9)

Essentially, the Fourier Slice Theorem says that the Fourier transform of the Radon

projection of an object is equal to the object’s Fourier transform evaluated on the line

perpendicular to that projection [10]. The basis of reconstructions and approximate

reconstructions of Radon transforms extending from this theorem are based on a

process called filtered backprojection.

2.3 Filtered Backprojection

If we smear a Radon projection back across the original object space, we get what we

call a backprojection:

R#
θ g(x) = g (θ, 〈x,θ〉) (2.10)

The averaged backprojection is given by integrating these backprojections over all

backprojections:

R#g(x) =

∫
Sn−1

g (θ, 〈x,θ〉) dθ (2.11)

where Sn−1 represents the set of all unit vectors in Rn. The averaged backprojection

of the Radon transform of an object yields a blurred version of the original object

19



[17] given by:

R#Rf = T ∗ f (2.12)

T (x) = |Sn−2| 1

‖x‖
=

2πn/2

Γ(n/2)

1

‖x‖
(2.13)

The blurring due to the convolution with T (x) is quite significant. In order to per-

fectly reconstruct the original object, we can filter the Radon transform before taking

the averaged backprojection.

R#(w) ∗ f = R#(w ∗ Rf) (2.14)

Filtering the Radon transform with functions w with the property thatR#(w)∗f = f

will result in a perfect reconstruction. Theoretically, such functions exist [16], with

R#(w) approximating a delta function, yielding an exact inversion formula for the

Radon transform. However, in practice, noise and discrete sampling often make other

filters [1] which do not represent exact inversion preferable for the approximate re-

construction of objects, depending on the signal to noise ratio and the object type.

Reconstructed tomographic images can also be further enhanced using post recon-

struction filtering [4].

2.4 X-ray transform

A similar transform to the Radon transform is the x-ray transform which integrates

the attenuation function over lines L instead of hyperplanes:

Xµ(x,θ) =

∫
x∈L

µ(x)dx =

∞∫
−∞

µ(x+ tθ)dt (2.15)

Note that in two dimensional space (R2), hyperplanes are lines, and thus the

Radon transform and the x-ray transform correspond to the same transform. Re-

lationships [8][19] between these transforms have been thoroughly studied in many

dimensions. While the Radon transform may be more convenient from a reconstruc-

tion point of view, due to its special relationship to the Fourier transform, the x-ray
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transform is considerably more practical in terms of experimental measurement. The

reason lies in the following property of light.

2.5 Beer-Lambert Law

Before continuing further, we should introduce the Beer-Lambert Law. Up until

now, we have talked about taking Radon and x-ray projections without putting these

mathematical definitions into a physical framework. The physical justification for

studying these transforms is that we can measure something similar to a line integral

of attenuation by illuminating an object with a known light source and taking a

picture of its shadow. The Beer-Lambert Law relates the input light intensity I0 to

the output light intensity I by way of a line integral through the attenuation function

[12].

I = I0 exp

−
∫
L

µ(x)dx

 (2.16)

Solving for the line integral yields:

− ln

∣∣∣∣ II0

∣∣∣∣ =

∫
x∈L

µ(x)dx = Xµ(x,θ) (2.17)

This equations gives us a physical justification for studying x-ray and Radon trans-

forms and a way of measuring them in the real world. In particular, in two dimensions

(R2),

I(θ, s) = I0 exp {−Rµ(θ, s)} (2.18)

2.6 Two Dimensional Radon Transforms

As we have seen, two dimensional Radon transforms are particularly special because

they correspond to x-ray transforms and their Radon projections can be measured

directly in the physical world. Individual Radon projections in three dimensions
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and higher do not have this correspondence, so additional mathematical complexity

is involved in the conversion between x-ray projections to Radon projections. In a

typical CT scanning device, cone-beam or fan projections are measured which are

effectively reorganizations of x-ray projection data.

In this thesis, we will focus our attention on two dimensional Radon transforms

and their inversion. Our object will live in R2, be a one dimensional curve embedded

in two dimensions, and Radon projections will integrate over lines. All of our analysis

should be applicable to objects in three dimensions by analyzing the three dimensional

volume in two dimensional slices.

In two dimensional space (R2) we can write our Radon transform as:

Rµ(θ, s) = Rµ(θ, s) =

∫
〈x,θ〉=s

µ(x)dx (2.19)

Where θ = (cos θ, sin θ) and x ∈ R2.

Two useful properties of two dimensional Radon projections is that they are even

functions with respect to θ and s:

Rµ(−θ,−s) = Rµ(θ, s) (2.20)

and they are periodic with a period of 2π:

Rµ(θ, s) = Rµ(θ + 2π, s) (2.21)

These two properties mean that the two dimensional Radon transform of the entire θ

domain can be found from any interval of size π. Thus, when we plot two dimensional

Radon transforms, we will only plot them on the range from θ = [0, π) as this will be

representative of the entire transform.
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2.7 Compressive Sensing

When performing tomographic imaging on an object, the above reconstruction meth-

ods generally require sampling at the nyquist frequency in order to perform a rea-

sonable reconstruction. In recent years, a sampling and processing technique called

compressive sensing [7] has been studied to exploit the fact that objects being ob-

served are often sparse in some basis. By assuming your unknown object is sparse

in some basis, one can use linear programming to search for a reconstruction solu-

tion that takes in to account this sparsity to provide a more accurate reconstruction

for objects that are indeed sparse in that basis. Compressive sensing is currently

being investigated for use in MR imaging [15], image processing [2], and other sig-

nal reconstruction applications [6]. Similar to the compressive sensing algorithm, we

will assume our object has certain characteristics and exploit these characteristics to

search for a reconstruction solution given fewer measurements than would classically

be needed.
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Chapter 3

Surface Attenuation Model

We typically model the attenuation of light through an object by assigning a finite

attenuation coefficient per unit length to every point in space. To image a projection

of the object, we then integrate this attenuation function onto the projected surface.

Sheet-like surfaces have zero volume, so in order to adhere to this model, we will

have to assign infinite values to points on the surface. In this section, we propose an

attenuation model for thin surfaces by composing them from delta functions.

3.1 Hypersurfaces

In geometry, a manifold is a simply connected topological space that locally resembles

the Euclidean space of a specific dimension at every point. For example, a one-

dimensional manifold looks locally like a line at every point, while a two-dimensional

manifold looks locally like a plane at every point. We will denote an n-dimensional

manifold as an n-manifold, and any real Euclidean n-dimensional space as Rn. We

will also denote R1 as R. Furthermore, let Sn−1 represent the unit n-sphere: the set

of all unit vectors in Rn. Sn−1 is clearly a manifold of dimension n−1 as it represents

the surface boundary of the unit n-ball.

A hypersurface is a specific type of manifold for which the dimension of the mani-

fold is one less then the dimension of the space in which it is embedded. For example,

a piece of paper folded in three dimensions (a 2-manifold embedded in R3) would
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R2

2r

P n−1
η

φ

P n−1

θ′

θ
2r√

1−〈θ,η〉2
= 2r

sinφ

〈x,θ〉 = s

Figure 3-1: Geometry of a line projection 〈x,θ〉 = s crossing a hyperplane P n−1 of

thickness 2r in R2 at angle φ given by
√

1− 〈θ,η〉2 = sinφ.

be an example of a hypersurface, while a string twisting around in three-dimensions

(a 1-manifold embedded in R3) would not. We choose to restrict our analysis to

hypersurfaces because they posses two properties:

1. The Lebesgue measure on Rn of a hypersurface is zero. In other words, the

hypersurface has zero volume.

2. The Lebesgue measure on Rn−1 of the projection of a hypersurface onto Rn−1

can be nonzero. In other words, the hypersurface has nonzero surface area.

Modeling the attenuation function for a hypersurface is not obvious. If the hyper-

surface is infinitely thin, then its attenuation coefficient per unit length at each point

on the surface must also in some sense be infinite in order to have nonzero attenuation

across the hypersurface. We will derive the form of this attenuation coefficient based

on a limiting case.

3.2 Attenuation Function of Hyperplanes

Before we try to define the attenuation function for a general hypersurface, let us

address the simpler problem of modeling a hyperplane. A hyperplane is a flat hyper-

surface with constant surface normal everywhere, extending infinitely in all directions.
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The following set describes a hyperplane with surface normal in the direction η ∈ Sn−1

and distance σ ∈ R from the origin:

P n−1 = {x ∈ Rn : 〈x,η〉 = σ} (3.1)

where 〈a, b〉 represents the scalar product of vectors a and b. Let us give this hyper-

plane thickness by extending it by a small distance r ∈ R in the ±η directions. The

following set describes our new thickened hyperplane:

P n−1 = {x ∈ Rn : |〈x,η〉 − σ| ≤ r} (3.2)

Let α represent the total attenuation across this surface in the normal direction,

with zero attenuation outside. Then the attenuation per unit length inside the surface

would then be α/2r. Recall the notation f : Rn → R defining a function f which

maps the space Rn onto R. We can write the attenuation function µ : Rn → R of our

thickened hyperplane as:

µP (x) =
α

2r
rect

(
〈x,η〉 − σ

2r

)
(3.3)

where the rectangular function rect(x) : R 7→ R is defined as:

rect(x) =

 1 if |x| ≤ 1
2

0 if |x| > 1
2

(3.4)

To model this attenuation function as an infinitely thin hyperplane, we take the limit

as r goes to zero:

µP (x) = lim
r→0

α

2r
rect

(
〈x,η〉 − σ

2r

)
(3.5)

Here it will be useful to recall the Dirac delta function, a generalized function

satisfying the following two conditions:
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(I) δ(x) = 0 when x 6= 0 (3.6)

(II)

∞∫
−∞

δ(x)dx = 1 (3.7)

The delta function has a number of useful properties. It acts as an identity under

convolution:
∞∫

−∞

f(x)δ(x− a)dx = f(a) (3.8)

It scales according to:

δ(αx) =
δ(x)

|α|
(3.9)

Also, any bounded function ϕ : R 7→ R that integrates to 1 from −∞ to ∞ can

approximate the delta function by scaling its domain sufficiently while preserving its

integral:

δ(x) = lim
ε→0

1

ε
ϕ
(x
ε

)
(3.10)

Since the rectangular function is bounded and integrates to 1 from −∞ to ∞, we

have:

µP (x) = α δ(〈x,η〉 − σ) (3.11)

Here we have compressed the volume of the thick hyperplane onto the infinitely thin

hyperplane, and in doing so made the attenuation function infinite where nonzero.

3.3 Attenuation Function of Hypersurfaces

The above derivation justifies an attenuation model of an infinitely thin hyperplane

as a plane of delta functions. We will extend this model to hypersurfaces by placing

a delta function at every point on the hypersurface:

µHn−1(x) = α(x)

∫
p∈Hn−1

δ(x− p) (3.12)
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Chapter 4

Identification of Surface Objects

Traditional tomography generally requires a large number of projections to achieve

an accurate reconstruction. In this section, we will show that certain types of objects,

specifically surface objects, can be fully reconstructed from as few as two projections

given that each projection can be measured with perfect resolution. We will restrict

our analysis to surface objects described by one dimensional curves in two dimensions.

In this chapter, we will restrict our analysis to identifying an unknown object

provided a minimal number of perfect projections. A perfect projection can be thought

of as the exact Radon transform of the object restricted to a specific direction. We

assume infinite spatial resolution as well as perfect intensity measurement accuracy.

This section seeks to explore the limits on the number of projections needed to identify

certain objects without the presence of noise or other physical restrictions.

4.1 Identification of a Point Object

Let us begin our identification process with the simplest of objects: the point object.

In general, our point will be described by three parameters: a position in R2 specified

by p = (xp, yp) and an attenuation factor αp. We can also represent the position

coordinates of p in terms of polar parameters rp =
√
x2
p + y2

p and φp = atan2(yp, xp):

p = (xp, yp) = (rp cosφp, rp sinφp) = rpφ̂p (4.1)
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where φ̂p = (cosφp, sinφp) and the function atan2 : R,R 7→ (−π, π] extends the range

of the typical function arctan : R 7→ (−π/2,−π/2) according to:

atan2(y, x) =



arctan
(
y
x

)
x > 0

π + arctan
(
y
x

)
y ≥ 0, x < 0

−π + arctan
(
y
x

)
y < 0, x < 0

π
2

y > 0, x = 0

−π
2

y < 0, x = 0

undefined y = 0, x = 0

(4.2)

The attenuation function for our point object is then given by:

µp(x, y) = αpδ(x− xp)δ(y − yp) = αp δ(x− p) (4.3)

Recall in R2, the Radon transform for our point object will be given by:

Rµp(θ, s) = αp

∫
〈x,θ〉=s

δ(x− p)dx (4.4)

for θ = (cos θ, sin θ). Simplifying this equation with the definitions of p and θ yeilds:

Rµp(θ, s) = αp δ (s− 〈p,θ〉) (4.5)

Rµp(θ, s) = αp δ (s− rp(cos θ cosφp + sin θ sinφp)) (4.6)

Rµp(θ, s) = αp δ (s− rp cos(θ − φp)) (4.7)

Below is a plot of locations where the delta function of the point’s Radon transform

is nonzero. It represents a single sinusoid in Radon space. This is why two dimen-

sional radon transforms plotted with s and θ as axes are sometimes called sinograms.

However, instead of plotting the radon transform rectilinearly as we have done on the

sinogram, one can also plot the radon transform in two dimensional space by taking

θ and s to represent polar coordinates in the original object space. Let us transform
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δ (s− 〈p,θ〉)

θ

s

φp
s(θ) = rp cos(θ − φp)

0 π
4

π
2

3π
4

π

−rp

0

rp

Figure 4-1: Nonzero locations of the Radon transform sinogram of a point in R2.

(θ, s)→ x ∈ R2:
s = ‖x‖ θ =

x

‖x‖
(4.8)

Then for δ (s− 〈p,θ〉) to be nonzero:

‖x‖ =

〈
p,

x

‖x‖

〉
‖x‖2 = 〈p,x〉

‖x‖2 − 2
〈
x,
p

2

〉
+
∥∥∥p

2

∥∥∥2

=
∥∥∥p

2

∥∥∥2

〈
x− p

2
,x− p

2

〉
=
∥∥∥p

2

∥∥∥2

∥∥∥x− p
2

∥∥∥2

=
∥∥∥p

2

∥∥∥2

And:
δ (s− 〈p,θ〉) = δ

(∥∥∥p
2

∥∥∥2

−
∥∥∥x− p

2

∥∥∥2
)

(4.9)

In other words, the Radon transform maps each point p in the object space onto the

surface of a sphere in Radon space. The line running from the origin to p constructs

a diameter of the sphere. In R2, each point maps to a circle. For convenience and for

comparison with sinograms, we will call plots of the Radon transform in this spacial

domain circlegrams. We clearly observe that the signature of a point object in Radon

space is a sinusoid with a period of 2π or a circle containing the origin, depending on
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Figure 4-2: Nonzero locations of the Radon transform circlegram of a point in R2.

how you plot the Radon transform. One can uniquely specify a sinusoid in a sinogram

with two points on the sinusoid. For the circlegram, three points are necessary to

uniquely specify a circle. However, we notice that the origin is necessarily contained

on the circle, so we only need to specify two additional points on the circle to uniquely

specify its location. Thus, we should be able to identify the location of the point object

simply from two distinct Radon projections.

For example, given distinct projection angles θ1, θ2 ∈ [0, π), suppose we observe

zero integrated attenuation everywhere except the points s1 and s2 respectively where

infinite integral attenuation is observed. Then each nonzero projection must satisfy

Equation 4.9:

(
si cos θi −

px
2

)2

+
(
si sin θi −

py
2

)2

=
(p2
x + p2

y)
2

2
(4.10)

Then after simplification, the location of the point object (px, py) will be given by the

solution to the following linear system: s1 cos θ1 s1 sin θ1

s2 cos θ2 s2 sin θ2

 px

py

 =

 s2
1

s2
2

 (4.11)
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Note that the determinant of this system is zero when:

s1s2(sin θ2 cos θ1 − cos θ2 sin θ1) = s1s2 sin(θ2 − θ1) = 0 (4.12)

Since θ1 and θ2 are distinct, sin(θ2−θ1) will never be zero for θ1, θ2 ∈ [0, π). However,

if s1 (or symmetrically s2) is equal to zero, then p is perpendicular to θ1, thus we can

solve the following modified linear equation: cos θ1 sin θ1

s2 cos θ2 s2 sin θ2

 px

py

 =

 0

s2
2

 (4.13)

Thus, given two distinct projections, we can fully identify a point object’s location.

However, since it’s attenuation is infinite, we cannot determine its attenuation coef-

ficient αp. As we will see shortly, this will not be the case for one dimensional curves

composed of a continuum of points, and we will be able to deduce the attenuation

coefficient of the curve via its integrated attenuation.

4.2 Identification of a Line Segment Object

Let us now define a line segment L with constant attenuation coefficient αL composed

of the line segment bounded by vertices v1 = (v1x, v1y) and v2 = (v2x, v2y). The set

L can be formally defined as:

L = {x ∈ R2 : x = v1 + t(v2 − v1) ∀t ∈ [0, 1]} (4.14)

The attenuation function for our line object can be given as an integral of delta

functions:

µL(x) = αL

∫
p∈L

δ(x− p) = αL

‖v2−v1‖∫
0

δ

(
x−

(
v1 + t

v2 − v1

‖v2 − v1‖

))
dt (4.15)
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Then the Radon transform of L can be written as:

RµL(θ, s) = αL

∫
〈x,θ〉=s

‖v2−v1‖∫
0

δ

(
x−

(
v1 + t

v2 − v1

‖v2 − v1‖

))
dt dx (4.16)

RµL(θ, s) = αL

‖v2−v1‖∫
0

δ

(
s−

〈
v1 + t

v2 − v1

‖v2 − v1‖
,θ

〉)
dt (4.17)

RµL(θ, s) = αL

‖v2−v1‖∫
0

δ

(
s− 〈v1,θ〉+ t

〈
v2 − v1

‖v2 − v1‖
,θ

〉)
dt (4.18)

RµL(θ, s) =
αL∣∣∣〈 v2−v1

‖v2−v1‖ ,θ
〉∣∣∣

‖v2−v1‖∫
0

δ

 s− 〈v1,θ〉〈
v2−v1

‖v2−v1‖ ,θ
〉 + t

 dt (4.19)

Now we can represent this integral of delta functions as a rectangular function via

the relation:

rect

(
x− c
a

)
=

c+a
2∫

c−a
2

δ(x+ t)dt (4.20)

Taking a = ‖v2 − v1‖ and c = ‖v2 − v1‖/2, the Radon transform for the line segment

object L becomes:

RµL(θ, s) =
αL∣∣∣〈 v2−v1

‖v2−v1‖ ,θ
〉∣∣∣ rect

(
s− 〈v2 + v1,θ〉/2
〈v2 − v1,θ〉

)
(4.21)

Note in the limit as 〈v2 − v1,θ〉 goes to zero, this Radon transform becomes a delta

function, but is finite when 〈v2 − v1,θ〉 6= 0. Note also that the magnitude of the

Radon transform takes on values between αL and infinity. For simplicity, let us define

vectors v∆ = v2−v1 and vΣ = (v2 +v1)/2. Then the line segment Radon transform

becomes:

RµL(θ, s) =
αL‖v∆‖
|〈v∆,θ〉|

rect

(
s− 〈vΣ,θ〉
〈v∆,θ〉

)
(4.22)

In the physical world, we will measure an intensity change according to the Beer-
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Figure 4-3: Intensity converted Radon transform sinogram of generic line segment L
with α = 0.2.

Lambert Law (Equation 2.16). In this case, we will measure a finite intensity given

by:

I(θ, s) = I0 exp

{
αL‖v∆‖
|〈v∆,θ〉|

rect

(
s− 〈vΣ,θ〉
〈v∆,θ〉

)}
(4.23)

This measured intensity passing through the line segment will range from 0 when the

integral attenuation is infinite, to I0e
αL when the line runs parallel to θ. Figures 4-3

and 4-4 show plots of a sinogram and circlegram respectively of measured intensity

for a generic line for αL = 0.2, with black representing zero transmitted intensity and

white being unattenuated transmitted intensity I0.

Note that the Radon transform of the line segment covers in a sense the union of

the Radon transforms of the individual points that make up the segment. Figure 4-5

shows circles corresponding to ten different points on the generic line segment L.

What is the minimum number of projections required to perfectly identify a generic

line segment? We will analyze identification using first two distinct projections and

three distinct projections respectively.
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Figure 4-4: Intensity converted Radon transform circlegram of generic line segment
L with α = 0.2. A “+” marks the origin, with L drawn in black.

Figure 4-5: Radon transform circlegram for ten evenly spaced points of generic line
segment L.

4.2.1 Two Projections

As with the point object, one might expect to be able to identify a line segment

from two distinct projections alone. Let us analyze a pair of distinct projections,

θ1, θ2 ∈ [0, π). As long as 〈v∆,θi〉 6= 0, for each θi = (cos θi, sin θi), each projection

will look like a rectangular function that can be characterized by three parameters: its

center ci, its width wi, and its height (measured intensity) Ii. These three parameters

will be functions of angle given by:

ci(θi) = 〈vΣ,θi〉 (4.24)

wi(θi) = |〈v∆,θi〉| (4.25)
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Ii(θi) = I0 exp

{
αL‖v∆‖
|〈v∆,θi〉|

}
(4.26)

For two projections, the equations for c1 and c2 fully define the location of the sum

of the vertices vΣ given by the linear system: cos θ1 sin θ1

cos θ2 sin θ2

 vΣx

vΣy

 =

 c1

c2

 (4.27)

However, the equations for w1 and w2 do not fully define v∆ because of the non-linear

absolute value. Four possible systems exist yielding four different sets of answers: cos θ1 sin θ1

cos θ2 sin θ2

 v∆x

v∆y

 =

 ±w1

±w2

 (4.28)

R2

θ1
θ2

|w1|

|w2|

L

L′
vΣ

Figure 4-6: Backprojections and two possible circlegrams for one pair of projections
of a unknown line segment object, either L or L′.

The four solutions (v∆x, v∆y)i comprise two different pairs of solutions that are

negatives of each other: one pair v∆a = −v∆b for which w1/w2 is positive, and
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another pair v∆c = −v∆d for which w1/w2 is negative. Figure 4-6 shows a plot of the

ambiguity of these two solutions. The backprojections formed by the two observed

widths w1 and w2 smeared back across the object space form a parallelogram in which

the line segment can possibly reside, the line segment existing in either diagonal of

the parallelogram.

The last two equations (4.26) for measured intensity are actually the same relation

for the quantity αL‖v∆‖ when combined with the width measurements:

αL‖v∆‖ = |〈v∆,θi〉| ln
{
Ii(θi)

I0

}
= wi(θi) ln

{
Ii(θi)

I0

}
(4.29)

If we have prior knowledge of αL, and our two measured projection angles are not

perpendicular, we can resolve the ambiguity between the two parallelogram diagonals

by having an equation for the diagonal’s length ‖v∆‖. If the two projection angles

are perpendicular, the parallelogram would become a rectangle with two diagonals

of identical length, and distinction between the two would not be possible given the

above equations.

To summarize identification from two distinct projections, it is not possible to

resolve a binary ambiguity without additional information. If the value of αL is known,

identification is possible provided that the two projections are not perpendicular and

〈v∆,θi〉 6= 0 for each θi = (cos θi, sin θi).

4.2.2 Three Projections

Measuring another distinct projection in addition to our original two projections

will yield three more equations: one each for center, width, and height (measured

intensity) provided again that 〈v∆,θ3〉 6= 0. The equation for center is redundant as

the center equations for the first two projections fully define vΣ. Similarly, all three

equations for measured intensity identically yield the same relation for the value

αL‖v∆‖.

However, the additional equation for width w3(θ3) = |〈v∆,θ3〉| will resolve the

ambiguity for v∆. By plugging in each of the four possible solutions of v∆i into
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this third equation’s right side, only one will evaluate to the correct measured w3

(call it v∆a). A solution must exist from our presumption that the line segment

exists. We must now prove uniqueness of this solution. If the solution exists among

the possible solutions, one of the possible solutions must also be its negative (call

it v∆b). v∆a 6= v∆b 6= 0 based on our assumption that 〈v∆,θi〉 6= 0. Furthermore,

v∆a 6= v∆c 6= v∆d because each θi is a distinct projection angle.

With this third projection, v∆ and vΣ are both fully defined and unique. This

also means that v1 and v2 can also be fully recovered from the linear system:


−1 1 0 0

1 1 0 0

0 0 −1/2 1/2

0 0 1/2 1/2




v1x

v2x

v1y

v2y

 =


v∆x

v∆y

vΣx

vΣy

 (4.30)

Furthermore, ‖v∆‖ will be known, so αL can be readily derived from any one of the

measured intensity equations.

To summarize, it is possible to fully identify the location (v1,v2) and attenuation

αL of an unknown line segment object from three distinct projections.

4.3 Identification of Two Connected Line Segments

Let us now consider the identification of two connected line segments; two line seg-

ments sharing a vertex. This object is fully defined by its three vertices (v1,v2,v3)

and its two attenuation coefficients (α1, α2) corresponding to segments (v1,v2) and

(v2,v3) respectively. This object is simply the superposition of two line objects as

described in the previous section. However, the presence of an additional line seg-

ment raises issues of ambiguity as to how the object’s three vertices are connected,

and which vertices are observed at each discontinuity in the Radon transform. Again,

for simplicity, let us define the following values:

v∆1 = v2 − v1 v∆2 = v3 − v2 (4.31)
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Figure 4-7: Intensity converted Radon transform sinogram of generic line segment L
with α = 0.2.

vΣ1 = (v2 + v1)/2 vΣ2 = (v3 + v2)/2 (4.32)

Then the Radon transform for our connected line segment object L2 will be:

RµL2(θ, s) =
α1‖v∆1‖
|〈v∆1,θ〉|

rect

(
s− 〈vΣ1,θ〉
〈v∆1,θ〉

)
+
α2‖v∆2‖
|〈v∆2,θ〉|

rect

(
s− 〈vΣ2,θ〉
〈v∆2,θ〉

)
(4.33)

Figures 4-7 and 4-8 show plots of a sinogram and a circlegram respectively of measured

intensity for a generic connected line segment object for α1 = α2 = 0.2, with black

representing zero transmitted intensity and white begin unattenuated transmitted

intensity I0.

We observe that just about every Radon projection looks like two adjacent rect-

angular functions, with the exception of three discrete projections. Two projection

angles corresponding to the solutions to the two equations 〈v∆i,θ〉 = 0 yield Radon

transforms that look like a single rectangular function with delta function at one

boundary of the rectangular function. A third projection angle also looks like a sin-

gle rectangular function when the height of each adjacent rectangular function is the
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Figure 4-8: Intensity converted Radon transform circlegram of generic line segment
L with α = 0.2. A “+” marks the origin, with L drawn in black.

same: the projection angle θ for which the following equation is satisfied.

α1‖v∆1‖
|〈v∆1,θ〉|

=
α2‖v∆2‖
|〈v∆2,θ〉|

(4.34)

If the three vertices (v1,v2,v3) are not collinear, there will only exist one solution to

this equation. If the three vertices are collinear, the connected line segment will be

identical to a single line segment discussed in the previous section.

4.3.1 Random Projections

When dealing with line segments, we have developed conditions for which Radon

projections look normal, or behave as expected and do not degenerate into a special

case. We have also seen that these degenerate cases occur at discrete projection angles.

For the single line segment, there was one such projection angle: the projection angle

which was perpendicular to the line segment itself. Now for connected line segments,

there are three discrete projection angles that are degenerate, two projection angles

that are perpendicular to the two line segments, and a third for which the measured

intensities on either side of vertex v2 are equalized. In the case where α1 = α2, this

projection angle corresponds to the direction of the bisector of the angle formed by
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the two line segments. For a general connected chain of n vertices, there will be

(n− 1) + (n− 2) = 2n− 3 degenerate projection angles.

In any case, these degenerate projection angles are discrete, and finite in number.

Because these projection angles are discrete and finite in number, if we choose mea-

surement projection angles randomly, we will choose a degenerate projection with

probability zero. From now on, we will consider only random projection angles which

will ensure that we will always obtain a generic measurement of the object.

4.3.2 Two Projections

Note that relating center and width measurements to edge lengths v∆ and edge centers

vΣ is no longer trivial. For each Radon transform, there is a combinatorial ambiguity

as to where each edge is located. For example, from each Radon projection are we

observing two edges that are overlapping or adjacent? However, given random Radon

projections, we are guaranteed to observe three discontinuities Di corresponding to

the projection of each vertex onto the projection angle:

Di(θ) = 〈vi,θ〉 (4.35)

It is not known which discontinuity corresponds to which vertex, but because

vertices vi must lie along backprojection lines, we can determine possible vertex

locations based on backprojection line intersections for different projection angles. In

addition to information about the locations of discontinuities, each Radon projection

also provides information about the light attenuation through the two spaces bounded

by each adjacent pair of discontinuities. This measured intensity will have three cases

for the two line segment object:

Ii = I0 exp


−α1‖v∆1‖
|〈v∆1,θ〉|

if edge 1 is present

−α2‖v∆2‖
|〈v∆2,θ〉|

if edge 2 is present

−α1‖v∆1‖
|〈v∆1,θ〉|

− α2‖v∆2‖
|〈v∆2,θ〉|

if both edges are present

 (4.36)

As with the single line segment object, it is impossible to resolve the ambiguity
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inherent in identification with simply two projections and no prior knowledge of the

attenuation coefficients for each edge. Figure 4-9 shows backprojections of two generic

Radon projections for a sample two segment object L2. Instead of four possible vertex

locations with two possible segments as was observed with the single line segment

case, here we have nine possible vertex locations with 18 possible line paths. Table

4.1 shows a listing of the 18 possible line paths that could result in the given vertex

backprojections.

R2

θ1
θ2 1

2

3

4

5

6

7

8

9

Figure 4-9: Backprojections for two generic Radon projections of a unknown con-
nected line segment object L2. Possible vertex positions are circled and numbered.

However, we can further limit the possible paths by exploiting the measured inten-

sities. Because we now have two line segments, it is possible that the two line segments

might overlap for any given Radon projection. If they do overlap, the middle vertex

v2 will not be positioned in the middle position, and the measured intensity of the

rectangular function adjacent to v2 will be smaller and experience higher attenuation

equal to the sum of the attenuations through each segment. More importantly, the

measured intensity of the rectangular function adjacent to v will be smaller than the

measured intensity of the other rectangular function.
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159 249 348
195 267 357
168 276 375
186 294 384
618 429 438
519 627 537

Table 4.1: Vertex ordering of the 18 possible two segment paths given two generic
Radon projections, without taking into account measured intensity. Each digit cor-
responds to the index of a vertex in Figure 4-9. The first digit corresponds to vertex
v1 of the segment, the second with vertex v2, and the third with vertex v3.

Therefore, having measured intensities of generic projections, we have knowledge

of which rectangular function experiences higher attenuation (exhibits lower measured

intensity) and, since v2 can be adjacent only to the higher intensity rectangular

function, we can limit the number of possible paths. In the example shown in Figure

4-9, vertices 1,2,3,6, and 9 correspond to impossible locations of the central vertex of

the line path, thus we can further limit the possible paths to the eight paths in Table

4.1 having v2 equal to indices 4,5,7, or 8. These possible paths are listed in Table 4.2.

159 357 249 348
276 375 186 384

Table 4.2: Vertex ordering of the eight possible two segment paths given two generic
Radon projections, taking into account measured intensity. Each digit corresponds
to the index of a vertex in Figure 4-9. The first digit corresponds to vertex v1 of the
segment, the second with vertex v2, and the third with vertex v3.

Without knowledge of the individual attenuation values αi for each edge, we can

gain no further information about our unknown object. However, if we know for

example that both edges have the same attenuation value α1 = α2, then we can

actually gain more information than had we only looked at each edge in isolation.

Each of the eight possible paths that our connected line segment object might take

have a known geometry. Given a single value of measured intensity, we can calculate

the unique value of α that must exist for each possible path and store this listing

of possible α values. These α values will be unique with probability 1 based on the
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presumption of random projections. Identification of the correct value of α can be

achieved by making a second such listing of possible α values for a different value of

measured intensity and comparing the listings. Only one value of α will be common

between the two listings, and this will be the correct value. Because this α value was

associated with a specific path, this path must be the correct path, and the connected

line segment object has been identified using only two projections.

4.4 Identification of Piecewise Linear Graphs

More general piecewise linear graphs of line segments can be evaluated in a similar

manner to the two connected line segment case above. In the general case, the

identification algorithm will require keeping track of all possible edge configurations

of which there are an exponential number, 2(n−1)n/2. However, if we restrict ourselves

to chains (only one or two connections per vertex), than the identification algorithm

becomes computationally tractable, only having to keep track of a polynomial number

of possible paths O(n5). Just as with two line segments, if α is known to be the same

for all edges, then only two projections are needed for exact identification, while

if α can be different for each segment, a third projection will be needed for exact

identification.

4.5 Identification of Curved Surface Objects

Up until this point, we have only discussed the identification of piecewise linear surface

objects defined by their vertices. In identifying piecewise linear surface objects, we

compared the difference between adjacent values of measured intensity to essentially

determine the amount of bending occurring at that point on the object. For connected

strictly surface objects with constant attenuation coefficient along the path, we can

adopt a similar algorithm. From three random Radon projections, the two endpoints

of the curve can be identified from the discontinuities in the measured intensity of the

Radon projection as we have discussed in identifying a single line object. The value of
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the attenuation coefficient can be found from the discontinuity information as well in

a similar manner as before. With a known value of the attenuation coefficient, a slope

can be associated with every attenuating point on each Radon projection. In this way,

the curve can be exactly reconstructed using the endpoints as boundary conditions

after integrating the derivative of the curve found from the measured intensity. It is

necessary to take into account the measured intensity from at least two non-orthogonal

projections in order to resolve ambiguities that will arise from values of infinite slope.
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Chapter 5

Conclusion

In this thesis we have defined an attenuation model for surface objects with negligible

volume and algorithms for identifying these objects given a minimal set of random

two dimensional Radon transform projections. Point objects require at least two pro-

jections to identify. Line segment objects require three Radon projections to identify,

unless the attenuation coefficient is known, in which case two Radon projections are

sufficient. Interestingly, connecting additional line segments with the same atten-

uation coefficient makes identification of the entire object’s attenuation coefficient

easier because of the ability to compare attenuation between segments. Piecewise

linear chains consisting of two or more connected line segment objects with the same

attenuation coefficient can be fully identified from only two projections. However,

piecewise linear chains with variable attenuation coefficient still require three projec-

tions to identify. Lastly, general connected curved surfaces require three projections

to identify based on their two endpoints and reconstruction of the object from the

derivatives of its projections.

There is much future work to be done. This theory is easily extendable to three

dimensional objects by analyzing two dimensional slices of the object. It is worth

mentioning that interesting identification algorithms exist when directly analyzing

three dimensional Radon projections of surface objects (vertices map to a sphere in

three dimensional Radon space). However, it is of less practical interest as three

dimensional Radon projections cannot be measured directly.
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Also a question of considerable importance, but of substantial complexity is to an-

alyze the proposed identification algorithms when spatial resolution and measurement

accuracy are not perfect or with the addition of noise. This thesis was primarily con-

cerned with providing a lower bound for the number of projections required to fully

identify certain types of objects, and did not attempt to address this area of practical

concern.
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Appendix A

Notation

x scalar

θ scalar angle

x vector

θ unit vector

‖x‖ Euclidean norm of vector x

〈x,y〉 inner product of vectors x and y

R field of real numbers

Rn n-dimensional Euclidean space

Sn−1 unit n-sphere

|A| Lebesgue measure of Euclidean subset A

{x : P} Set of x with property P

X 7→ Y set X maps into set Y

Rf Radon transform of f

Ff Fourier transform of f
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Appendix B

MATLAB Code

B.1 Obtaining Projection Data

function [D,I] = projradon2(v,e,t,a)

% projradon2.m, 2D RADON PROJECTIONS

% Returns the discontinuty and intensity matricies for the 2D Radon transform

% given sparse 1D manifold data defined by vertices and edges

%

% Usage: [D,I] = r_proj2d(V,E,T,A)

%

% V - an nv x 2 matrix specifying the (x,y) coordinates of all nv vertices

%

% E - an ne x 3 matrix specifying the vertices and attenuation of all ne

% edges

% Ei1 = index of first vertex v1 of edge

% Ei2 = index of second vertex v2 of edge

% Ei3 = normal attenuation of edge

%

% T - a vector of length nu specifying the nu sampled projection angles

%

% A - if E is ne x 2, program will pad E to ne x 3 with the constant value A

%
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% D - an nv x nu matrix specifying the increasing sorted location of the ith

% discontinuity Dij at direction j

%

% I - an nv-1 x nu matrix specifying the measured intensity Aij between

% discontinuity Di and Di+1 at direction j

%

% Written by: Jason Ku, MIT

% Email: jasonku@mit.edu

% Created: July 2011

%% Input validation

nv = size(v,1); % number of vertices

ne = size(e,1); % number of edges

nu = numel(t); % number of projection directions

D = zeros(nv,nu); % sorted discontinuities per angle

I = zeros(nv-1,nu); % sorted transmitted intensity per angle

if size(v,2) ~= 2

disp(’Error: V must have size(V,2) == 2’);

return

end

if size(e,2) ~= 3

if size(e,2) == 2

e = [e,ones(ne,1)*a];

else

disp(’Error: E must have size(E,2) == 2|3’);

return

end

end

if ~any(size(t) == 1)

disp(’Error: t must be a vector’);
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return

end

%% Find D and I

u = [cos(t)’,sin(t)’]; % convert t to unit vectors

u = u./(diag(u*u’).^0.5*ones(1,2)); % normalize u

ue = v(e(:,1),:) - v(e(:,2),:); % ue - direction of edges

ue = ue./(diag(ue*ue’).^0.5*ones(1,2)); % normalize ue

A = (e(:,3)*ones(1,nu))./abs(ue*u’); % A - attenuation wrt e and u

s = v*u’; % s - projections wrt v and u

[D,ind] = sort(s,1,’descend’); % sort discontinuities

for i = 1:nu

for j = 1:ne

[ei,~] = find( ... % fill I from vertex arrangement

ind(:,i)*ones(1,2) == ...

ones(nv,1)*[e(j,1),e(j,2)]);

ei = sort(ei); % loc of edge endpoints (ascend)

for k = ei(1):ei(2)-1

I(k,i) = I(k,i)+A(j,i); % add attentuation

end

end

end

end

B.2 Detecting Object Verticies

function [v] = detectradonvert2(D,I,t,lim)

% detectradonvert2.m, VERTEX DETECTION 2D

% Finds vertices from measured radon projections

%
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% Usage: [V] = detectradonvert2(D,I,t)

%

% D - an nv x nu matrix specifying the increasing sorted location of the ith

% discontinuity Dij at direction j

%

% I - an nv-1 x nu matrix specifying the measured intensity Aij between

% discontinuity Di and Di+1 at direction j

%

% t - a vector of length nu specifying the nu sampled projection angles

%

% V - an nv x 2 matrix specifying the (x,y) coordinates of all nv vertices

%

% Written by: Jason Ku, MIT

% Email: jasonku@mit.edu

% Created: July 2011

%% Input validation

nv = size(D,1); % number of vertices

nu = numel(t); % number of projection directions

if size(D,2) ~= nu

disp(’Error: size(D,2) ~= numel(t)’);

return

end

if size(I,2) ~= nu

disp(’Error: size(I,2) ~= numel(t)’);

return

end

if size(D,1) ~= size(I,1)+1

disp(’Error: size(D,1) ~= size(I,1)+1’);

return
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end

if ~any(size(t) == 1)

disp(’Error: t must be a vector’);

return

end

if nargin == 3; lim = 0; end

%% Detect Vertices

I = exp(-I);

% detect = [ones(1,nu); ...

% (abs(I(2:nv-1,:)-I(1:nv-2,:))>lim); ...

% ones(1,nu)];

%

% disp(’Number of discontinuties observed’)

% disp([’for each projection given lim = ’,num2str(lim)])

% disp(sum(detect,1))

v = zeros(nv,2);

u = [cos(t)’,sin(t)’]; % convert t to unit vectors

u = u./(diag(u*u’).^0.5*ones(1,2)); % normalize u

ve = zeros(nv,2);

l = 1;

for i = 1:nv

for j = 1:nv

ve(j,:) = [D(i,1)*u(1,:); ... % intersection of two backprojections

D(j,2)*u(2,:)]\ ... % D(i,1) and D(j,2)

[D(i,1)^2;D(j,2)^2];

end

for j = 1:nv
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vf = [D(i,1)*u(1,:); ... % intersection of two backprojections

D(j,3)*u(3,:)]\ ... % D(i,1) and D(j,3)

[D(i,1)^2;D(j,3)^2];

for k = 1:nv % compare intersections to find match

if all(abs(vf’ - ve(k,:)) < 200*eps)

v(l,:) = vf;

l = l+1;

break

end

end

end

end

end

B.3 Detecting Object Edges

function [E] = detectradonedge2(D,I,t,V)

% detectradonedge2.m, EDGE DETECTION 2D

% Finds edges from measured radon projections

%

% Usage: [E] = detectradonvert2(D,I,t)

%

% D - an nv x nu matrix specifying the increasing sorted location of the ith

% discontinuity Dij at direction j

%

% I - an nv-1 x nu matrix specifying the measured intensity Aij between

% discontinuity Di and Di+1 at direction j

%

% t - a vector of length nu specifying the nu sampled projection angles

%

% V - an nv x 2 matrix specifying the (x,y) coordinates of all nv vertices
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%

% Written by: Jason Ku, MIT

% Email: jasonku@mit.edu

% Created: July 2011

%% Input validation

nv = size(D,1); % number of vertices

nu = numel(t); % number of projection directions

if size(D,2) ~= nu

disp(’Error: size(D,2) ~= numel(t)’);

return

end

if size(I,2) ~= nu

disp(’Error: size(I,2) ~= numel(t)’);

return

end

if size(D,1) ~= size(I,1)+1

disp(’Error: size(D,1) ~= size(I,1)+1’);

return

end

if ~any(size(t) == 1)

disp(’Error: t must be a vector’);

return

end

%if nargin == 3; lim = 0; end

%% Detect Edges

%I = exp(-I);
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% detect = [ones(1,nu); ...

% (abs(I(2:nv-1,:)-I(1:nv-2,:))>lim); ...

% ones(1,nu)];

%

% disp(’Number of discontinuties observed’)

% disp([’for each projection given lim = ’,num2str(lim)])

% disp(sum(detect,1))

E = zeros(nv-1,3);

u = [cos(t(1)),sin(t(1))];

II = zeros(nv);

for i = 1:nv

for j = 1:nv

if j ~= i

v = (V(i,:)-V(j,:))/norm(V(i,:)-V(j,:));

II(i,j) = 1/abs(u*v’);

end

end

end

measdiff = [I(1,1);I(2:end,1)-I(1:end-1,1);-I(nv-1,1)];

diff = zeros(nv,nv,nv);

for i = 1:nv

for j = 2:nv

for k = 1:j-1

if i>j

diff(j,k,i) = (-II(i,j)-II(i,k))/measdiff(i);

else

if i>k
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diff(j,k,i) = (II(i,j)-II(i,k))/measdiff(i);

else

diff(j,k,i) = (II(i,j)+II(i,k))/measdiff(i);

end

end

end

end

end

a = 0;

[v1,v2] = find(diff(:,:,1));

for i = 1:numel(v1)

if sum(sum(abs(diff(:,:,2)-diff(v1(i),v2(i),1))<5000*eps)) ~= 0

a = diff(v1(i),v2(i),1);

end

end

if a == 0

disp(’Alpha not found.’);

return

end

%disp([’Alpha = ’,num2str(1/a)]);

s = 1;

for i = 1:nv

[j,k] = min(abs(diff(:,:,i)-a));

[~,j] = min(j);

k = k(j);

% disp(’Edge detected between vertices:’);

% disp([num2str([i,j]),’ and ’,num2str([i,k])]);
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if i>j

E(s,:) = [i,j,1/a];

s=s+1;

end

if i>k

E(s,:) = [i,k,1/a];

s=s+1;

end

end

E = E(1:s-1,:);

end

B.4 Plotting

function [] = plotsampradon2(D,I,t,type)

% plotradon2.m, PLOT RADON 2D

% Plots input radon transform in either (t,s) space or (x,y) space

%

% Usage: [] = plotradon2(D,I,t,type)

%

% D - an nv x nu matrix specifying the increasing sorted location of the ith

% discontinuity Dij at direction j

%

% I - an nv-1 x nu matrix specifying the measured intensity Aij between

% discontinuity Di and Di+1 at direction j

%

% t - a vector of length nu specifying the nu sampled projection angles

%

% type - ’rect’ or ’polar’ plot preference, ’rect’ default

%
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% Written by: Jason Ku, MIT

% Email: jasonku@mit.edu

% Created: July 2011

%% Input validation

nv = size(D,1); % number of vertices

nu = numel(t); % number of projection directions

I = exp(-I);

if size(D,2) ~= nu

disp(’Error: size(D,2) ~= numel(t)’);

return

end

if size(I,2) ~= nu

disp(’Error: size(I,2) ~= numel(t)’);

return

end

if size(D,1) ~= size(I,1)+1

disp(’Error: size(D,1) ~= size(I,1)+1’);

return

end

if ~any(size(t) == 1)

disp(’Error: t must be a vector’);

return

end

if nargin == 4 && strcmp(type,’rect’) && strcmp(type,’polar’)

disp(’Error: type must be rect or polar’);

return

end

%% Prepare figure
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clf(gcf);

set(gcf,’Color’,’w’);

hold on

axis off

%% Plot rect

if nargin == 3 || strcmp(type,’rect’)

for i = 1:nv-1

for j = 1:nu-1

patch([t(j),t(j),t(j+1),t(j+1)]*180/pi, ...

[D(i,j),D(i+1,j),D(i+1,j),D(i,j)], ...

’k’,’FaceColor’,[1,1,1]*(I(i,j)), ...

’EdgeColor’,’none’);

end

patch([t(nu),t(nu),t(1)+pi,t(1)+pi]*180/pi, ...

[D(i,nu),D(i+1,nu),D(i+1,nu),D(i,nu)], ...

’k’,’FaceColor’,[1,1,1]*(I(i,nu)), ...

’EdgeColor’,’none’);

end

plot([0,179],[0,0],’k’)

xlim([-1,180]);

end

%% Plot polar

if strcmp(type,’polar’)

u = [cos(t)’,sin(t)’];

temp = u(nu,:);

ang = zeros(nu,1);
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for i = nu:-1:2

ang(i) = acos(u(i,:)*u(i-1,:)’)/2;

u(i,:) = (u(i-1,:)+u(i,:))/norm(u(i-1,:)+u(i,:))/cos(ang(i));

end

ang(1) = acos(-u(1,:)*temp’)/2;

u(1,:) = (u(1,:)-temp)/norm(u(1,:)-temp)/cos(ang(1));

for i = 1:nv-1

for j = 1:nu-1

p = [u(j,:)*D(i,j);u(j,:)*D(i+1,j); ...

u(j+1,:)*D(i+1,j);u(j+1,:)*D(i,j)];

patch(p(:,1),p(:,2), ...

’k’,’FaceColor’,[1,1,1]*(I(i,j)), ...

’EdgeColor’,’none’);

end

p = [u(nu,:)*D(i,nu);u(nu,:)*D(i+1,nu); ...

-u(1,:)*D(i+1,nu);-u(1,:)*D(i,nu)];

patch(p(:,1),p(:,2), ...

’k’,’FaceColor’,[1,1,1]*(I(i,nu)), ...

’EdgeColor’,’none’);

end

plot(0,0,’k+’)

axis equal

end

end
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