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Urban Street Lighting Infrastructure Monitoring
Using a Mobile Sensor Platform

Sumeet Kumar, Ajay Deshpande, Stephen S. Ho, Jason S. Ku, and Sanjay E. Sarma

Abstract— We present a system for collecting and analyzing
information on street lighting infrastructure. We develop a car-
mounted sensor platform that enables collection and logging of
data on street lights during night-time drive-bys. We address
several signal processing problems that are key to mapping
street illumination levels, identifying street lamps, estimating
their heights, and geotagging them. Specifically, we highlight an
image recognition algorithm to identify street lamps from the
video data collected by the sensor platform and its subsequent
use in estimating the heights of street lamps. We also outline a
framework to improve vehicle location estimates by combining
sensor observations in an extended Kalman filter framework. Our
eventual goal is to develop a semi-live virtual 3-D street lighting
model at urban scale that enables citizens and decision makers
to assess and optimize performance of nighttime street lighting.

Index Terms— Sensors, urban sensing, mobile sensing,
machine vision, image recognition, machine learning, geotagging,
automation.

I. INTRODUCTION

THERE are nearly 40 million street lights in the US
alone, and they consume 31 TWh of energy annually [1].

Worldwide numbers will increase with urbanization as billions
of people move to urban centers. International lighting
standards require a certain threshold of street lighting ranging
from 1 lux of light at the surface of residential suburbs to
50 lux at road intersections [2], [3]. Oddly, the science of
streetlight placement is relatively primitive today, and the
means to monitor how much light reaches the street are very
limited. The standards for measuring lighting are complicated,
manual, and rarely implemented at a city-wide scale.

Furthermore, like much of the infrastructure in the
developed word, lighting infrastructure has aged. Monitoring
streetlights is a tedious manual task that relies on inspection
and incident reports. Matters are not helped by the
2008 financial crisis, after which many cities have faced
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severe budget shortfalls, several of which are teetering on
the brink of bankruptcy [4]. To offload infrastructure costs,
some cities are now outsourcing lighting activity to private
companies on fixed-price contracts, but have inadequate
methods to measure the service level delivered to citizens.
The contractors themselves are considering replacing old
lights with LED units, but are struggling to figure out what
the inventory of lighting is, how many lux units they deliver
on the street level, and how to monitor streetlight condition
over time. LED lights are dimmable, which opens up another
avenue: modulating lights to ensure that energy is minimized
without compromising safety or security. This too requires
better assessment and measurement tools.

A common practice to monitor street lighting is to have a
city official drive scheduled routes and observe the status of
street lamps. This approach lacks scalability and scientific reli-
ability. Another approach involves local government blocking
of a specific road and measuring light levels using a lux meter.
Though this approach provides accurate and reliable data,
it is labor intensive, not scalable and may cause significant
inconvenience to the citizens. Researchers have also explored
deployment of static light sensor nodes on streetlight poles
to monitor and control lamps remotely [5], [6]. Commercial
systems such as GE LightGrid system and Philips CityTouch
system have found some recent success. Such systems are
expensive, for example, the GE LightGrid for connecting
26 − 50 street lamps costs $10 k [7] and may not be viable
where an upgrade of the existing lighting infrastructure is
difficult. Also, the static sensors measure the lighting levels
accurately close to the lamps, while the decision makers
are more interested in measuring street level illumination.
Furthermore, such static deployment suffers from drawbacks,
such as, cost, maintenance needs and node failures [8], [9].

There is a pressing need for a scalable way to measure
and map street lighting. The information needs to be updated
regularly enough so that timely operational and maintenance
decisions are enabled, though the information update may not
be real time. In short, imagine a form of “Google Street View”
with a semi-live, updated view of lighting along city streets
and its utility to both citizens and decision makers.

In this paper, we introduce a car-top sensor system designed
to monitor urban street lighting. The inherent mobility of
the system allows scalability of data collection. We discuss
challenges and solutions on sensor integration, data manage-
ment, algorithm development and data analysis. While we note
that there are strict norms around how illuminance measure-
ments need to be conducted from the regulations point of
view [2], [3], and our system does not claim any of these, our
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Fig. 1. Overall system architecture.

work demonstrates the feasibility of a scalable and reliable
approach to monitoring, mapping and identifying failures.

In Section II we present a high-level architecture of our
system, lay down our application goals and establish context
for the various modules to be presented in the rest of the paper.

II. SYSTEM ARCHITECTURE

Figure 1 presents the overall system architecture organized
in four layers. The bottom most layer consists of sensors
collecting data of different modalities. All the sensors are
mounted on a car-top sensor platform. The next layer consists
of a data logging system which gathers and logs data from the
sensors. The data processing layer addresses the processing of
raw data to extract useful features and learn different models
that serve as the building blocks for the potential applications
in the top-most layer. The location estimate improvement
model fuses data from GPS, IMU and OBD-II sensors to
improve vehicle location estimates. The luminosity mapping
model leverages improved locations and data from light sen-
sors to create spatio-temporal heat maps of street illumination.
The street lamp identification model leverages camera images
to classify street lamps from other bright objects. The lamp
height estimation model uses the classification results and data
from OBD-II sensors to estimate the heights of street lamps.

A. Paper Organization

The rest of the paper is organized around the detailed
description of the bottom three layers. In Section III we
describe the bottom two layers including the sensors and the
components of the data logging system. In the remaining
sections we address the modules in the data processing layer.
In Sections IV and V, we address the lamp identification
model and the lamp height estimation model respectively.
In VI, we briefly address the location estimate improvement
model and luminosity mapping. In Section VII we discuss the
related work that pertain to the different technical challenges
addressed in the paper and in Section VIII we conclude.

TABLE I

SENSOR MAKE AND DESCRIPTION

III. HARDWARE AND SYSTEM INTEGRATION

We develop a car-top platform mounted with sensors to
gather information on street illumination levels and condi-
tions of street lamps. We measure incident illumination using
light/lux sensors. Light sensors are incapable of providing
differentiating information about various sources of light.
Since we aim to understand the condition of street lamps, we
employ a system of video cameras that provides information
on the presence or absence of street lamps in the environment.
Furthermore, location information is crucial for any mobile
sensing approach to perform geo-spatial analytics. We add
a GPS to our sensor platform. Since GPS suffers from low
reliability, especially in urban driving conditions we augment
our sensor platform with an IMU that provides accelerometer,
gyroscope and magnetometer (heading) data and an OBD-II
reader which reads car speed data.

A. Sensors

In this section we describe the sensors, their description
and make, and the manufacturer specified sampling rates
for digital sensors. Table I above provides a consolidated
summary. We used the TEMT6000 light sensor to measure
light intensity. For collecting video data, we used BC-EL630,
which is a security camera with CCD sensors. This particular
camera was selected as it can operate effectively at low
lighting conditions without the use of infrared and has a
wide dynamic range that allows it to be used under varied
lighting conditions. The system also had a power box that
supplied 12 V DC to the cameras. During deployment, the
power box was connected to a cigarette charger in the car.
The cameras came along with a DVR, which was used
to record videos during field experiments. We used the
3D Robotics uBlox LEA6 GPS module which allowed easy
integration with a microcontroller through a serial port for
data logging. For an IMU, we used the UM6-LT Orientation
Sensor from CH Robotics. It provided accelerometer and
gyroscope measurements. We used an OBD-II UART from
Sparkfun to interface with a car’s OBD-II bus providing car
speed data. This sensor supports all major OBD-II standards,
such as CAN and JBUS, and can be easily integrated
with a microcontroller through its standard Rx/Tx ports.
As a microcontroller, we chose Arduino Mega 2560
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Fig. 2. (a) Assembled car-top sensor platform. (b) Light sensor array.

because of its speed, I/O capabilities, extensive open source
documentation and code base and ease of use. We also used
a standard 9 V battery pack for powering Arduino.

B. Car-Top Platform

Fig. 2a shows the assembly of the sensor platform on top of
a car. We fabricated aluminum supports to mount the cameras.
In order to ensure coverage of the half-plane above the car
roof, we mounted the cameras at angles +30° and −30° with
respect to the vertical direction. We created an array of light
sensors to measure spatial variability of vertical illumination
on a plane or the isolux contours. The isolux contours when
combined with the lamp location information can help us to
model the three-dimensional light field and estimate street
level illumination. We designed a plexiglass board on which
the light sensors were assembled in an 8 × 2 array as shown
in Fig. 2b. The GPS, the IMU, the OBD-II sensor and the
microcontroller were assembled on the plexiglass. Both the
camera rig and the plexiglass were then attached to a roof
rack which was then placed on top of a car. The DVR was
placed inside the car and the BNC cables were passed through
the window opening. Similarly, wires from the OBD-II reader
were passed through the window opening to be connected to
the car’s OBD port.

C. Data Logging and Management

Figure 1 also depicts the architecture of the data logging
system. We used the analog pins on Arduino Mega to read data
from the light sensors and the Rx-Tx pins to read the serial
data coming from the IMU, OBD-II reader and GPS (digital).
For the analog data, Arduino uses a 10-bit analog-to-digital
converter to convert the voltage reading in the range 0−5 V to

a binary number. The other three sensors use an asynchronous
serial protocol to communicate with the Arduino over the
Rx-Tx ports. We used the documentation available for each
of the three sensors to develop a computer program to parse
the serial data coming from the sensors and extract the relevant
sensor measurements. We used a microSD shield, an adapter
that enabled connecting a microSD card to the microcontroller,
for direct logging of the sensor data as .txt files on the mounted
microSD card. As seen in Figure 1 the video data was recorded
on the DVR.

We had data coming from different sensors and it was
important to have a common frame of reference for their
timestamps to enable multi-sensor data analytics. The digital
sensors, microcontroller and DVR have internal clocks which
may not be synchronized. We decided to use a laptop’s clock
to provide a common time reference to all the sensors as
shown in the bottom layer of Figure 1. At initialization we
used a laptop to provide a reference time stamp to the DVR.
Similarly, when the microcontroller was initialized, we sent
the current time of the laptop to the Arduino via USB through
a computer program that we developed. Note that the two
time stamps may have different values but are referenced
with respect to the laptop’s clock. We then relied on the
internal DVR and microcontroller clocks to advance time
stamps from the initial reference times. We used the Arduino’s
time stamp when logging different sensors’ data. All the
sensor data on the Arduino were hence timestamped with
respect to the laptop time just as the video on the DVR. This
solution however required a user to manually initialize both
the Arduino and the DVR and then the data was collected
autonomously during deployment. The Arduino polled data
from the different sensors sequentially and repeated the data
collection loop throughout the field deployment as shown in
Figure 1. The data collection scheme was a polling system
where the microcontroller sequentially looked for a new data
packet from each sensor and if the data packet was available,
the microcontroller read and transferred the data packet to
the microSD card. During testing, we identified that if the
data packet was not available then moving to the next sensor
reduced the idle time of the microcontroller and maximized
the overall sampling rate of the sensor system.

D. Field Experiments

We tested our final prototype in four cities in three countries:
Cambridge MA (USA), Malaga (Spain), Santander (Spain)
and Birmingham (UK). The prototype worked robustly and
reliably. In our experiments we found that the GPS was logged
at a sampling rate of ∼1 Hz and the sampling rate had a
standard deviation of ∼25%. The other three sensors were
logged at ∼2.5 Hz and the rate had a standard deviation
of <20%. The total data rate for the Arduino microcontroller
was ∼1.71 MB/hr. The videos were recorded at 25 fps and
the data rate was ∼0.96 GB/hr.

We found the driving speeds of 30 mph and less to have a
minimum impact on the measurement process. As the mini-
mum separation between lamp poles in our field experiments
was greater than 25 m, at 30 mph our system collected at
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Fig. 3. Example images collected by the mobile sensor platform.

least 5 light sensor, OBD-II and IMU measurements, 2 GPS
observations and 50 images per street lamp.

IV. AN ALGORITHM FOR STREET LAMP IDENTIFICATION

Our eventual goal is to develop a “Google Street View” of
urban street lighting infrastructure that has a semi-live updated
information on the location and performance of lamps and
street illumination. For that, several data processing challenges
have to be addressed as shown in Fig. 1. Identifying street
lamps from the night time video data collected is the first step.
In this section we present a street lamp identification algorithm
that employs state of the art feature engineering and machine
learning techniques. In the subsequent section we extend the
results on lamp classification to estimate the heights of street
lamps. Later, we discuss the importance of improving vehicle
location and trajectory estimates in the context of luminosity
mapping and present an extended Kalman filter framework to
combine car speed measured by OBD-II reader with GPS data
and inertial measurements.

A. Street Lamp Identification From Night Time Video Data

Fig. 3 shows example images collected by our mobile
light scanning platform. As one expects, night time images
comprise either of dark pixels or saturated pixels. Further-
more, the images suffer from bloom or glow which produces
fringes of light extending from bright objects into the dark
regions of the image and reduces the contrast and sharpness
(i.e., presence of edges). The aforementioned reasons make it
hard to implement object identification algorithms.

As seen in Fig. 3, the bright, saturated regions in the images
may also correspond to non-street lamps such as lit windows
and doors and we need to differentiate them from the street
lamps. We minimize imaging headlights of other cars by
ensuring that the field of view of the camera system is above
the car roof (at intersections cars on the roads perpendicular
to the driving direction may come into view). Essentially, our
goal is to develop an object identification technique which
can identify street lamps from other bright objects in the
background.

We now present an overview of our approach to developing
the street lamp classifier. The details of the implementation can
be found in the author’s PhD thesis [10]. As mentioned before,
the pixels corresponding to street lamps are saturated. A direct

Fig. 4. For the original images in the top row the bottom row contains the
corresponding binary image.

first step towards identifying the regions of an image that may
correspond to a street lamp is to apply a thresholding-based
image segmentation.

B. Preprocessing

We first converted every color image IN×M×3 to a grayscale
image GN×M where every pixel had a value Gi, j ∈ [0, 1].
The grayscale image was then converted to a black and white
image using thresholding segmentation where every pixel with
Gi, j ≤ t was mapped to zero and every pixel with Gi, j > t
was mapped to 1. We chose the threshold to be t = 0.975
and denoted the binary image as BN×M . We further removed
from the binary image all the bright objects that had less than
200 pixels as we experimentally observed that street lamps
were typically larger than 200 pixels. Fig 4 shows examples of
the original image (first row) and the converted binary image
(second row).

A bounding box was drawn around each bright region and
the corresponding region in the original image (IN×M×3) was
cropped and saved as a possible street lamp candidate. We used
the cropped image set to develop the street lamp identification
algorithm. Fig. 5 shows example lamp images and Fig. 6
shows examples of non-lamp bright objects in the scene that
we aim to correctly differentiate from the lamps. The cropped
images were manually labeled as lamps and non-lamps to
enable the subsequent supervised learning study.

We observe that there is a significant variation in shape,
intensity distribution and background noise in the set of lamp
images. When comparing Fig. 5 with Fig. 6, we observe the
lamps are primarily oval in shape while the non-lamp objects
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Fig. 5. Example images of lamps.

Fig. 6. Example images of other bright objects in the scene.

are primarily rectangular in shape. Furthermore, there is a
difference in the nature of the spatial distribution of inten-
sity gradients in the regions surrounding the saturated pixels
between lamp and non-lamp objects. Note that identifying
an appropriate edge or corner set representation of the lamp
objects is hard due to both the variation in shape and the bloom
effect.

C. Feature Representation

Our approach is to construct different categories of feature
sets and then concatenate them to form a large feature vector.
Thereafter, we use dimension reduction techniques to find a
good subset of features from the large feature vector. The large
feature vector is composed of the following categories:

• Normalized Histogram of Grayscale Intensity: We
converted every cropped image to grayscale (∈ [0, 1]) and
calculated the histogram of the grayscale intensity with
the following bin centers: [0.05 : 0.1 : 0.95]T and the bin
size of 0.1 giving a 10 dimensional feature vector. Fig. 7
shows an example of the different histograms computed
for a lamp and a non-lamp image.

• Size and Total Intensity: Two additional feature vectors
which are the number of pixels in the cropped images
and the sum of the grayscale intensity.

Fig. 7. Normalized histogram of grayscale intensity. (a) A lamp image.
(b) A non-lamp image.

Fig. 8. Black and white binary image. (a) A lamp object. (b) A non-lamp
object.

• Shape Parameters: We converted each cropped image to
a black and white image by using thresholding segmen-
tation with a threshold value of 0.975. Matlab allowed
direct computation of several shape parameters using the
function “regionprops” and we used the following:

1) Number of Edges in the Convex Hull of the region:
We computed the Convex Hull of the black and
white image which is a p×2 matrix that specifies the
smallest convex polygon that can contain the region.
We took p as a feature vector which corresponded
to the number of edges in the enclosing convex
polygon of the region.

2) Eccentricity: Eccentricity (ϵ) of an ellipse which has
the same second-moment as the region.

3) Euler Number: A scalar which specifies the differ-
ence between the number of objects in the image
and the number of holes in the image. The rationale
behind using the Euler number is that we expect
lamp images to have no holes (Fig. 8a). On the other
hand non-lamp objects may have holes within the
bright regions (Fig. 8b).

4) Extent: The ratio of the total number of pixels in the
region to the total number of pixels in the smallest
rectangle containing the bright/white pixels.

• Histogram of Oriented Gradients (HOG): They
are feature descriptors that count occurrences of gra-
dient orientation in localized regions of an image.
These descriptors have found good success in object
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recognition [11]–[15]. The premise for the HOG descrip-
tors is that local object appearance and shape can be
described by the distribution of intensity gradients or edge
directions. To compute the HOG descriptors we converted
every cropped image to grayscale and then rescaled them
to a standard template size of 50 × 50 using a bilinear
transformation [16]. We then divided the image into
3 × 3 overlapping cells of pixel dimensions 24 × 24. We
computed the x and the y derivative of the image intensity
(Ix and Iy) using the centered derivative mask [1, 0,−1]
and [1, 0,−1]T respectively. The gradient orientation was

then calculated by θ = tan−1
(

Iy
Ix

)
. The angular range

of (π,π] was divided into 18 discrete bins each of
size 20°. The histogram for every cell was calculated by
identifying all the pixels in the cell whose θ belong to
a certain 20° bin interval and assigning the magnitude
of the gradient, i.e.,

√
I 2
x + I 2

y as the contribution of the
pixel in that bin. Hence, for every cell, an 18 dimensional
histogram vector (h) was created which was then contrast
normalized by dividing it by ∥h∥+0.01, where ∥.∥ is the
ℓ2 norm of the vector. Combining the histograms from
all the cells resulted in a 162 dimensional feature vector
that represented the HOG.

• Pixel Grayscale Intensity Values: We converted every
cropped image into a standard 50 × 50 template using a
bilinear transformation, converted them to grayscale and
concatenated the grayscale pixel intensity values to form
a 2500 dimensional feature vector.

After concatenating all the feature vectors obtained above,
we formed a 2678 dimensional feature vector, i.e., fi ∈ R2678.
Feature selection (aka variable reduction) is an important
step towards developing a robust classifier. Our data set
comprised of 13483 cropped images out of which 1689
were images of lamps. The preceding ratio of the number
of lamps to non-lamps was the natural distribution obtained
when the original video frames were cropped. Out of the
11794 non-lamp images 3288 were images of the texts added
by the camera (see bottom right of Fig. 8b).

D. Feature Reduction and Lamp Classification

In this paper, we employed filtering-based feature selection
techniques to reduce the dimension of the feature space
because of their speed and computational efficiency [17]–[22].
Many filter based feature selection techniques are supervised
and use the class labels to weigh the importance of individual
variables. We used Fisher score and Relief score as supervised
filters and principal component analysis (PCA) as an unsuper-
vised filter.

• We computed the Fisher score [17] of a feature for binary
classification using:

FS( fi ) = n1(µ
i
1 − µi )2 + n2(µ

i
2 − µi )2

n1
(
σ i

1

)2 + n2
(
σ i

2

)2

= 1
n

(µi
1 − µi

2)
2

(
σ i

1
)2

n1
+

(
σ i

2
)2

n2

, (1)

where n j is the number of samples belonging to class j ,
n = n1 +n2, µi is the mean of the feature f i , µi

j and σ i
j

are the mean and the standard deviation of fi in class j .
The larger the score, the higher the discriminating power
of the variable is. We calculated the Fisher score for every
variable and ranked them in a decreasing order and then
selected the subset whose weights were in the top p% as
the reduced feature set.

• We calculated the Relief score [18] of a feature by first
randomly sampling m instances from the data and using:

RS( fi ) = 1
2

m∑

k=1

d
(

f i
k − f i

N M(xk )

)
− d

(
f i
k − f i

N H(xk )

)
,

(2)
where f i

k denotes the value of the feature fi on the
sample xk , f i

N H(xk ) and f i
N M(xk ) denote the values of the

nearest points to xk on the feature fi with the same and
different class label respectively, and d(.) is a distance
measure which we chose to be the ℓ2 norm. The larger
the score, the higher the discriminating power of the
variable is. Again, we calculated the Relief score for every
variable and ranked them in a decreasing order. We then
selected the subset whose weights were in the top q% as
the reduced feature set.

• Given the observation matrix X , PCA computes a score
matrix S which represents the mean subtracted observa-
tion matrix in the latent space L through:

SN×M = (X − Xavg)N×M L M×M . (3)

If we chose a k-dimensional subspace to represent our
observations, using the first k columns of L (Lk) allows
the optimal representation of the observation in the
k-dimensional subspace as:

Ŝk = (X − Xavg)Lk . (4)

Increasing k increases the percentage variance explained
by the reduced subspace (vark). We selected k according
to the criterion vark

varM
≤ r , where r ∈ [0, 1].

The subsets selected by the three methods described
above depend on the parameters p, q and r respectively.
We used three different types of classifiers: Naive Bayes
classifier [23]–[25], discriminant analysis [26], [27] and sup-
port vector machines [28]–[30].

We divided the data set into a training set and a test set
where the test set had around 10% of the samples from each
of the three classes. We denoted the set of observations in the
training set as fT and the set of observations in the test set
as ft .

On the basis of the observation that the camera text was
consistent, we decided to develop a three-class classification
technique. In our proposed method we first aim to classify
the cropped image as a camera text or the “others” (one-vs-
all strategy for multi-class classification). Furthermore, text
recognition has been studied extensively [31]–[33] and it
would serve as a good control test for the proposed algorithm.
If the image is classified as the “others” we then employ a
two-class classification technique to identify if it is a lamp or
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TABLE II

NUMBER OF VARIABLES |S| IN THE SELECTED VARIABLE SUBSET

TABLE III

TEN-FOLD MISCLASSIFICATION RATE IN %

a non-lamp. The following details the steps involved in the
development of the sequential binary classifiers:

• Identifying Camera Text: Given the training data set fT ,
we first constructed class labels, assigning 1 to examples
that were camera text and 0 to the ones that belonged
to the “others” category. As discussed in Section IV-D,
choosing different values of p, q and r leads to different
sizes of the selected variable sets (|S|) as enumerated
in Table II.
Matlab has various implementations of each of the three
aforementioned classifiers and we studied their perfor-
mance with different implementations. We employed
10-fold cross-validation to find the best implementation
and the optimal parameters of a classifier. For the Fisher
score based variable selection method, with p = 0.75,
Table III enumerates the 10-fold misclassification rate
for the different classifiers. For the SVMs, the opti-
mal choice of C and γ (in the case of rbf kernel) in
Table III was obtained by doing a grid search on the
discrete set C = [0.005, 0.01, 0.1, 1, 10, 50]T and γ =
[0.005, 0.01, 0.1, 1, 10, 50]T and choosing the parameter
that gave the minimum 10-fold cross-validated misclas-
sification rate. We observed that the SVMs outperformed
the Naive Bayes and the discriminant analysis classifiers.
From the grid search we found that the best values of C
were 0.1 for the linear kernel, 0.005 for the quadratic and
the polynomial kernel and 50 for the radial basis function
kernel with the best γ = 10. Fig. 9 plots the variation
of the 10-fold misclassification rate and the size of the
selected variable set with p. Typically, a “U-shaped”
curve is expected for the misclassification rate with the

Fig. 9. (a) Variation of tenfold misclassification rate with p. (b) Variation
of size of the variable set selected by the Fisher score ranking with p.

size of the feature set, where a high number of features
lead to overfitting and higher cross-validation error while
very low number of features miss relevant features that
have good discriminative power. Our simulations show a
similar trend and comparing with the size of the selected
variable set (Fig. 9b), we chose p = 0.75 as a good
choice of the parameter for the Fisher score based feature
selection.
We then tested the SVM classifiers on the test set (ft )
and found that both the linear and the radial basis
function kernel achieved an accuracy of 99% in correctly
identifying the camera texts. Owing to its simplicity, we
chose the linear kernel SVM over the radial basis function
kernel SVM with C = 0.1.
We followed a similar analysis for the Relief score
based feature selection and found that q = 0.75 was a
good choice for sub-selecting features. The parameters
for SVMs were again identified by a grid search.
We observed that the SVMs outperformed the other
classifiers and when they were compared on the test
set, the linear kernel SVM achieved an accuracy of 99%
in correctly identifying the camera texts. Similarly, for
PCA based feature selection we found r = 0.75 to be
a good choice for feature reduction. On the test set we
again found that the linear kernel SVM gave an accuracy
of 99%.
From the above discussion, the best linear SVM selected
by either of the three feature selection methods achieved
an accuracy of 99% in correctly classifying camera
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texts on the test set. We selected all three of them as
the final set of classifiers for identifying camera texts
annotated on the images. The final prediction was made
on the basis of a simple majority vote across the three
classifiers. Note that in all the three cases the best value
of the box margin parameter, C , was found to be 0.1.

• Identifying Street Lamps: In this section we discuss
the development of the two-class classifier to identify
lamps and non-lamps from the set “others”. We followed
a process similar to the one discussed above. Firstly, we
identified the parameters (p, q and r ) for the different fea-
ture selection methods by comparing the 10-fold misclas-
sification rate and then we selected the classifier that gave
the minimum classification error on the test set as the final
classifier. Though, in this case, we observed that the PCA
based feature selection did not work as the first principal
component explained around 99.6% of the total variance
and when we used this component to train the classifiers,
we observed high misclassification rates (∼15%).
For the Fisher score based feature selection, we found
p = 0.75 to be a good choice which led to a variable set
of size 27. When the classifiers were used on the test set,
the minimum classification error (false negative here) of
2.80% was achieved by the quadratic SVM while the
minimum false positive error of 1.22% was achieved by
the rbf SVM. Note that the classification error with rbf
SVM was 8.34% while the quadratic SVM had a false
positive error of 5.23%. We selected the quadratic SVM
as the final choice of the classifier with C = 0.01.
We found q = 0.85 with |S| = 15 to be a good choice
for the Relief score based feature selection. On the
test set, the minimum classification error of 3.35% was
achieved by the polynomial SVM while the minimum
false positive error of 1.45% was achieved by the rbf
SVM. Also, the classification error with rbf SVM was
5.03% while the polynomial SVM had a false positive
rate of 5.34%. We selected the polynomial SVM as the
final choice of the classifier with C = 0.01.
We included the quadratic SVM with the Fisher score
based feature selection and the polynomial SVM with
the Relief score based feature selection as the final set
of classifiers. We then adopted a hybrid classification
scheme where an image was classified as a lamp if both
the classifiers predicted it to be a lamp otherwise it was
classified as a non-lamp. This approach was successful
in reducing the false positives and we obtained ∼5%
classification error and ∼3.5% false positive error with
the hybrid approach. Fig. 10 summarizes the steps
involved in creating the final hybrid classifier.

As digital cameras are becoming inexpensive and pervasive,
using images for infrastructure management has attracted
significant attention. Here we have described an approach that
employs systematic feature construction, reduction and subse-
quent classifier optimization to develop a lamp classification
algorithm that addresses our goal of street lamp identification
from the video data collected by the car-top sensor platform.
As a future work, we would like to explore more sophisticated
machine learning techniques, for example, deep learning that

Fig. 10. Schematic of the steps involved in creating the hybrid lamp classifier.

has the potential to automatically learn high level features
from the image set and perform improved classification [34].
We would also like to make the data publicly available so
that other researchers can explore novel image classification
techniques for street lamp identification.

V. A HEIGHT ESTIMATION ALGORITHM USING LAMP

TRACKING AND PERSPECTIVE GEOMETRY

Some cities have accurate data on streetlight inventory
including their heights but many don’t. Lamp height infor-
mation is useful for modeling illumination of streets and
walkways. Furthermore, this information is of interest to those
responsible for the maintenance of city lighting assets. For
example, when sending maintenance crews, differences in
lamp height can factor into what equipment and/or personnel
are required on site. In this section we propose a method to
estimate the height of the street lamps from the collected video
data.

Fig. 11a is a visual representation of the imaging per-
formed by the car-mounted camera system. Here we make
an assumption that the car travels parallel to the edge of the
road, i.e., along the x axis with a speed U . In this section,
we present a lamp height estimation algorithm that employs
perspective projection and optical flow on the two-dimensional
images.

A. Perspective Projection

Perspective projection describes the mapping of a three-
dimensional point in space to a two-dimensional coordinate on
the image plane [16], [35]. As shown in Fig. 11b, X −Y − Z is
the frame of reference attached to the ground with the Z−axis
pointing vertically up. The frame X ′ − Y ′ − Z ′ is attached to
the camera with the Y ′axis aligned with the optical axis and
at an angle θ = 60° with respect to Y axis. The point P
(in our case a street lamp) is represented by the coordinated
(X ′, Y ′, Z ′) and its image p by (x, f, z). The axis X and X ′

are coincident.
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Fig. 11. Geometry of the car-mounted imaging system.

Assuming an ideal pin hole camera model and using equa-
tions of coordinate transformation, for the point P we have

Z =
(

sin(θ) + z
f

cos(θ)

)
X ′ f

x
. (5)

We have further assumed that the ground reference frame
is attached to the roof of the car. We can now add the height
of the car (Ch) to Z to obtain the height of the lamp post as

hlamp = Ch +
(

sin(θ) + z
f

cos(θ)

)
X ′ f

x

= Ch +
(

sin(θ) + z
f

cos(θ)

)
Y ′. (6)

B. Optical Flow

Optical flow is defined as the apparent motion of the
brightness pattern on an image as the camera moves with
respect to an object or vice versa [16]. Referring to our
imaging geometry of Fig. 11a, let I (x, z, t) be the irradiance
at a time t at the image point (x, z). If u(x, z) and w(x, z)
are the x and the z components of the optical flow vectors at
that image point and if ∂ t is a small time interval, we make
the following assumption:

I (x, z, t) = I (x + u∂ t, z + w∂ t, t + ∂ t). (7)

Using the Taylor series expansion of (7) and ignoring higher
order terms, we obtain the following optical flow equation at
every pixel (i, j) of a digital image:

Ix ui, j + Izwi, j + It = 0, (8)

where we use a finite difference approximation to compute
Ix = (

∂ I
∂x

)
i, j , Iz =

(
∂ I
∂z

)

i, j
and It = (

∂ I
∂t

)
i, j .

Lucas-Kanade is a popular method for estimating optical
flow that divides the original image into smaller sections
and assumes a constant velocity in each section [36]. It then
solves a weighted least squares problem in each section by
minimizing the following objective:

∑ ∑

(i, j )∈(

W 2 (Ix u + Izw + It )
2 , (9)

where W is a window function that emphasizes the constraint
at the center of each section, ( is the extent of the section

Fig. 12. (a) Example grayscale image frame. (b) Magnitude of x–direction
intensity gradient. (c) Magnitude of y–direction intensity gradient.

and (u, w) are the constant optical flow velocities obtained
by minimizing (9). Fig. 12 shows an example image and
the x and y intensity gradient of the image. We observe
that the magnitude of the intensity gradient is primarily zero
throughout the image and the pixels with higher magnitude
are confined in a small region surrounding the lamps and
other bright regions. This observation prompts a modification
of the Lucas-Kanade method where we first identify the region
of the image where a street lamp is located using our lamp
classification technique and then use that region to estimate
the image velocity of the street lamp.

C. Algorithm for Height Estimation

The height of the lamp post as given by (6) is in terms
of the unobserved coordinate X ′. Using the pin hole camera
model we have

X ′ = xY ′

f
. (10)

We assume that as the car moves along X ′ axis, Y ′ or
the distance of the lamp from the camera remains constant.
Differentiating the left and the right side of (10) with respect
to time gives

U = u(x, z)Y ′

f

(⇒ Y ′ = U f
u(x, z)

, (11)

where U is the speed of the car along the X axis. Substituting
(11) in (6) we get

hlamp = Ch +
(

sin(θ) + z
f

cos(θ)

)
U f

u(x, z)
, (12)

where z is the image pixel corresponding to the street lamp and
u(x, z) is the x component of the optical flow corresponding
to the lamp pixel.

As discussed in Section V-B, we find the optical flow
velocity for lamp pixels by first using our lamp classifica-
tion algorithm to identify the street lamp and then use the
Lucas-Kanade formulation by assuming constant (u, w) over
the region corresponding to the street lamp. Assuming W = 1
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Fig. 13. Schematic of the steps involved in creating the lamp height
estimation algorithm.

in (9), we obtain the following estimate of u:

u = −

(∑∑
I 2

y

) (∑∑
Ix It

)
−

(∑ ∑
Ix Iy

) (∑ ∑
Iy It

)

(∑ ∑
I 2
x
) (∑ ∑

I 2
y

)
−

(∑ ∑
Ix Iy

)2
,

(13)

where the summations are taken over all the pixels (i, j) ∈ (l ,
which is the region of the image that is identified as a street
lamp. Our lamp identification algorithm also provides the
coordinates of the centroid (xl, zl) of the bounding box
corresponding to a lamp object. The z−coordinate of the
centroid, zl , was used in height estimate. The car speed, U ,
was measured by the OBD-II reader. We then have the
following estimate of the height of the street lamp:

hlamp = Ch +
(

sin(θ) + zl

f
cos(θ)

)
U f
u

. (14)

We used the following parameters for simulations: Ch = 2 m,
θ = 60°, f = 2.8 × 10−3 m and the size of an image pixel
to be 3.522 × 10−4 m (which was used to calculate zl ).
Applying the above framework to the video data collected in
Cambridge MA, we estimated the height of the Cobrahead
street lamps at the intersection of Vassar street and Main street
to be ∼12.9 m with a standard deviation of ∼1.5 m. Cobrahead
street lamps are typically installed between 12 − 14 m.
Fig. 13 summarizes the height estimation algorithm.

VI. LUMINOSITY MAPPING: IMPROVING VEHICLE

LOCATION ESTIMATES THROUGH

GPS-OBD INTEGRATION

Fig. 14 shows a visualization method where the height of the
cylinder is proportional to the average illumination measured
across the sensor array. The location data is provided by the
GPS and it specifies the center of the circle. Note that the
visualization overlays the night time data collected during our
drive-by deployments on the day time images from Google
Earth.

A key utility of our system is to compare our measurements
against the lighting standards. For example, at the intersection

Fig. 14. Two examples of street lighting levels indicated by vertical cylinders.

of Portland St and Broadway in Cambridge MA, the standard
recommends average illuminance of 34 lux with the ratio of
average to minimum illuminance being 3 [3]. Across several
measurements we found the average illuminance there to be
∼25 lux with the ratio of average to minimum illuminance
being ∼4. Note that our measurements were taken at the car-
top level while the standard recommends illumination values
at street level. As a part of future work, we aim to develop
techniques to estimate street level values from car top values.

GPS, which provides absolute geographic location,
is typically used to obtain location information of driving
vehicles and has an accuracy of a few meters [37]. Differential
GPS can have an improved sub-meter accuracy [38]. GPS,
in general, suffers from low reliability especially in urban
driving conditions due to multipath effects and poor satellite
signal [39]. Furthermore, as we discussed in Section III-D,
we log the data from the GPS at a lower sampling rate as
compared to the IMU and OBD-II scanner. A lower sampling
rate limits the spatial resolution of location information. Hence
in the context of our sensor platform, we needed to develop
a robust method for using low frequency, noisy GPS data
to accurately estimate vehicle trajectories. We achieved our
objective by integrating on-board-diagnostics (OBD) car speed
data with the GPS data and the accelerometer measurements
from the IMU in an extended Kalman filter (EKF) framework,
the details of which can be found in [40].

A different data collection system was used for the results
presented in this section. The system had a GPS that allowed
a maximum sampling frequency of 10 Hz and the data from
the IMU and the OBD-II reader were directly logged into
a laptop [40]. We collected the original GPS data collected
at 10 Hz and then systematically downsampled it to assess
the impact of a lower frequency GPS data. For each GPS
downsampled sampling rate ( fs ), we execute an on-line EKF
estimation, implementing state updates at 10 Hz and storing
the resulting state trajectory.

Fig. 15a and 15b depict two examples of vehicle trajectory
reconstructions with GPS data at fs = 0.2 Hz and 0.05 Hz,
respectively, together with a fs = 10 Hz reference trajectory
in black. At a downsampling factor of 50 ( fs = 0.2 Hz) we
achieve robust replication of the reference trajectory. At a
downsampling factor of 200 ( fs = 0.05 Hz), a segment-
wise distortion of the estimated trajectory is observed. These
segments mostly exhibit errors in the vehicle heading estimate,
while segment lengths show minor deviations.
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Fig. 15. Comparison of vehicle reference trajectory (in black) with
EKF trajectory estimate (in red) for different GPS sampling times.
(a) fs = 0.2 Hz. (b) fs = 0.05 Hz.

Fig. 16. Variation of ϵd with Ts .

We consider two error metrics: relative error in driven
distance estimate (ϵd ) and root mean squared error of position
estimates (ϵr ) [40]. In Fig.16 we report the variation of ϵd as
a function of Ts = 1/ fs . For EKF-based trajectory reconstruc-
tions, ϵd is lower than 0.1% for Ts < 1 s and lower than 1%
for Ts < 50 s. The aggregated distance increments exhibit a
higher driven distance error. The U-shaped distribution of the
errors can be attributed to GPS noise aggregation at low Ts
and the failure to capture sufficient path curvature details at
high Ts . On the other hand, our hybrid EKF method provides
robust driven distance estimate that is largely unaffected by
these sources of errors.

Furthermore, we extended our analysis to emulate
random GPS outage. For every entry in the downsampled
GPS-measurement vector, we determined its inclusion in the
EKF estimation as the outcome of a Bernoulli trial with a
certain probability of not observing the GPS data (denoted
by p). We chose p ∈ {1/3, 1/2, 2/3} and for each p ran
50 simulations to obtain mean and standard deviation of
the error metrics. Fig.17a shows that ϵr is acceptable up to
Ts = 1 s, after which we observe a sharp increase in ϵr .
As expected, the error is higher for higher probabilities of
GPS outage. Fig.17b shows a similar trend, though the driven
distance error is acceptable even for higher values of Ts .
For driving scenarios where the GPS availability may vary
across the route, this suggests an adaptive sampling strategy.

Fig. 17. Comparison of the performance metrics for different GPS outage
probability (p): (a) ϵr and (b) ϵd . The solid lines indicate the mean of the
metric while the dashed lines indicate mean +/− 1

2 standard deviation.

Adjusting the GPS sampling rate in accordance with observed
GPS outages will lead to higher accuracy in trajectory
estimation.

VII. RELATED WORK

In the recent past, mobile sensor systems have gained
significant attention with the promise to implement large scale
urban monitoring. Google Street View is a benchmark example
where images collected by a car driving on the streets are
stitched together to create 360° panoramic views [41]. The
CarTel project has shown great promise in monitoring urban
commute times, assessing Wi-Fi deployments and imple-
menting automotive diagnostics with deployments spanning
multiple years [42]. Researchers have also deployed vehicle
mounted infrared thermography system to address identifica-
tion of heat insulation leaks in residential and commercial
buildings [43]. The efforts presented in this paper are in line
with the above theme and vision.

Authors in [44] have recently investigated non-invasive
vehicle mounted sensor system to measure street lighting
levels. However their system does not include an OBD-II
sensor and cameras for capturing street lamp images. Though
they have discussed in detail the instrumentation challenges
and data collection in their field experiments, they have not
addressed signal processing and algorithmic challenges with
real world noisy data.

The advancements in computer vision and image
classification techniques have encouraged their use in
vision based urban and environment monitoring applications.
There are several challenges to image classification: the same
object can be imaged with different viewpoints, illumination,
occlusion, scale, deformation and background clutter [45].
Significant advancements have been made in the classification
of images to identify human faces [46]–[50] which have found
applications in the areas of surveillance and social networking.
Other application areas that have been researched are text
recognition [31]–[33] and car, motorbike or aeroplane
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detection [51]–[53]. Researchers have as well explored
computer vision techniques to identify street light blackouts
using simulated data [54].

The first step in image classification involves converting
the image to a feature vector on which a classification model
can be learned. The feature vector should have discriminative
power and at the same time should be robust to changes in
pose, illumination, scaling and background clutter. Researchers
have explored various object representation and feature con-
struction schemes such as edge descriptors, part and structure
models, constellation models, shape features, histogram of
oriented gradients, bag of visual words, etc. [45], [55], [56].

The next step involves developing a learning algorithm
which can be divided into generative and discriminative meth-
ods. In a generative model a joint distribution of the feature
vector (x) and the class label (c) is learned as p(c, x) while in
a discriminative model a conditional distribution p(c|x) or an
input-output relationship c = f (x) is learned. Both generative
models (e.g. mixture models, naive Bayes, topic models) and
discriminative models (e.g. support vector machines (SVM),
nearest neighbors, conditional random fields and neural net-
works) have been used for image classification applications
[23]–[30], [45], [55].

Typically the size of the feature vector in an image classifi-
cation task is large and a feature selection step is implemented
before developing a learning algorithm. Feature selection or
dimensionality reduction has been studied extensively in the
machine learning community and some of its key benefits
include: better understanding and visualization of data, faster
training and developing computationally efficient classifiers,
reducing the curse of dimensionality and providing better gen-
eralization performance. The feature selection techniques can
be broadly divided into three different categories: wrappers,
filters and embedded methods [17]–[22].

Optical flow for motion tracking has been studied
extensively in the computer vision community and has
found several applications in surveillance, three-dimensional
shape reconstruction, video compression, medical imaging
etc. [16], [57], [58].

Researchers have made significant progress in developing
sensor fusion algorithms for combining GPS data with inertial
measurement units (IMU) to improve location estimates. These
methods typically involve a vehicle motion model, a sensor
observation model and a Kalman filter like framework to
improve GPS location estimates [40], [59], [60].

Use of urban road map information and map-matching
techniques have been studied to further improve location
estimates [61]–[64]. Map-matching has the potential to be
integrated with our work to improve vehicle location errors.
Furthermore, map data can be used to construct prior estimates
on lamp locations which can reduce false negatives and
positives. Lamp location errors can also be reduced through
repeated measurements over time to increase the confidence
interval of the estimated location.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented a car-top sensor system
for monitoring urban street light infrastructure. Our sensor

system is built of an array of lux meters for light intensity
mapping and security cameras to identify street lamps from
different light sources. Dedicated microcontroller and DVR
systems help in logging data from these sensors. Additionally,
we gathered and combined data from GPS, IMU and OBD-II
sensors to obtain improved location estimates which enhance
the quality of mapping and improve accuracy of lamp inven-
torying. The main challenge with the camera images is to
separate street lamps from other shining objects. We developed
a supervised learning method to identify street lamps in
cropped images from other light sources. We used Fisher score
and Relief score as supervised filters and principal component
analysis (PCA) as an unsupervised filter in feature selection.
We demonstrated a classification accuracy of 95% and a false
positive rate of 3.5% with support vector machines. Once the
lamps were identified, we developed a perspective geometry
based methodology to estimate height of lamps, which can
help in developing a stock of street lamp inventory. We further
demonstrated average illumination mapping with the light
sensor data and improved location estimates.

To summarize, we have described that our final prototype
is capable of collecting data reliably under real driving condi-
tions. We have also discussed the algorithms and their founda-
tions that enable us to make inferences from the collected real
world noisy data. Indeed our efforts went through several itera-
tions, the details of which can be found in the PhD thesis [10].

The car-top sensor system presents several possible direc-
tions for future work. For example, light intensity mapping
and street lamp inventory can help in identifying low light
intensity areas and find candidate locations for adding street
lamps. This system can aid to monitor current health of
lighting infrastructure and maintenance needs. It can also be
used to verify existing lamp inventory data and create new
ones in a scalable way. As noted before, we would like to
develop techniques to estimate street level illumination levels
from car top measurements. Furthermore, we would like to
establish accuracy and error bounds to compare our process
with the measurement norms detailed in the lighting standards.
Correlating light intensity maps with other social indicators
such as crime frequency can recommend necessary actions.
Our eventual goal is to develop a semi-live virtual three-
dimensional street lighting model at urban scale that will
enable citizens and decision makers to assess and optimize
performance of nighttime street lighting.
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