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Abstract—The starting point of any Smart City approach
is knowing what is in the city and the location of city assets.
We propose a general, automated approach to inventorying and
monitoring outdoor city infrastructure using common sensors:
namely a GPS, IMU, and camera. The presented mapping
algorithm operates in the mobile sensing paradigm, using obser-
vations from a moving vehicle to construct a map of landmark
location estimates whose uncertainty decreases linearly with
the number of observations, robust to both translational and
angular error to first order. The algorithm is adaptable to many
applications given an appropriate image classifier. We apply our
algorithm to automatically locate and inventory city streetlights
and demonstrate its performance using both numerical simulation
and field experiments.

I. INTRODUCTION

Simultaneous localization and mapping, or SLAM refers
to machines mapping their environment and positioning them-
selves accurately within that environment [1] [2] [3]. SLAM
has been studied extensively in robotics and motion planning,
typically implimented using range finders [4] and cameras
combined with modeling of vehicle kinematics to inform an
estimate. This paper ignores observer localization in favor of
a limited but powerful model of landmark mapping with two
main features: an environment containing a finite set of fixed
landmarks; and an observer equipped with noisy estimates
of its own position, and estimates of the direction in which
landmarks are observed.

The motivation for the above formulation is twofold. First,
we limit the environment to a sparse set of landmarks to
simplify the typical computational complexity of trying to
map an entire environment. Second, the modern ubiquity of
smartphones provides a convenient platform to collect data
consistent with this model: small computers equipped with a
camera, IMU, and GPS. The IMU and GPS can give (possibly
highly inaccurate) estimates of position and orientation, and
with a sufficient image classifier for some class of landmarks,
the camera may provide an estimate of the direction of land-
marks in front of the camera. Using unbiased estimators like an
IMU with magnetometer (compass) and GPS greatly decreases
our reliance on sensitive odometry to estimate position that is
prone to drifting over time.

Much of the existing work using a single camera without
depth information for landmark mapping (called MonoSLAM)
relies on continuous motion of a camera for feature mapping
[5], or addresses the combinatorial problem of mapping and
location given perfect observation measurements [6] [7]. Our
estimation approach is robust to noise even for observations
given in random order. Existing work in triangulation at-
tempts to reconstruct the location of objects given only a

few measurements [8] [9], where as our approach exploits
multiple measurements to decrease the covariance matrix of
our estimation as the number of observations increases.

While addressing this general formulation, we keep in
mind the specific application of automatically locating and
inventorying landmarks in cities. The starting point of any
Smart City approach is knowing what is in a city, as well as
the location of city assets. The observation system described
in this paper could easily be mounted on existing municipal
fleet vehicles and gather data as the vehicle moves about the
city. The proposed estimation algorithm could be used to locate
and inventory many types of landmarks, given an appropriate
image classifier.

In this paper, we demonstrate the proposed framework
by mapping the location of streetlights. This information is
useful to cities to inventory and maintain their infrastructure.
Streetlights comprise a significant part of most municipal
budgets, and many municipalities still rely on self reporting
to maintain them. If a city knows where its infrastructure is,
the process of monitoring for maintenance and repair can be
automated saving time and money. Section II develops the
theoretical framework for the estimation algorithm. Section III
discusses the numerical simulation used to verify the theory.
Section IV describes experimental setup used to conduct field
experiments, with Section V analyzing the collected data. Final
thoughts are concluded in Section VI.

II. THEORY

We would like to identify the location of certain landmarks
in space. For now, we restrict our analysis to locating a
single landmark. For practical applications, we will mostly be
interested in landmarks in the plane or in three dimensions, but
the theory developed extends naturally to higher dimensions.

A landmark exists at an unknown position p in Rd. Unless
otherwise stated, we assume vectors are column vectors so
that p · p = pT p. Observations of the landmark are taken at
different positions xi ∈ Rd for i ∈ {1, . . . , n}, observing the
landmark in direction ui = (p−x)/‖p−x‖ where ‖·‖ denotes
the Euclidean norm. Observations are of the form (x̃i, ũi)
where x̃i and ũ are measurement estimates, functions only of
observation position xi and direction ui respectively. We will
use X to denote collectively the set of position observations,
and similarly U for the set of direction observations.

A. Perfect Information

First assume perfect data, i.e. that x̃i = xi and ũi = ui.
Then certainly any two observations (x1, u1) and (x2, u2) that



intersect (u1 6= u2) will be sufficient to reconstruct p perfectly
using methods of elementary geometry. Note that the line
through p and xi (which is parallel to ui) contains a unique
point qi closest to the origin, with

qi = p− ui(ui · p) = xi − ui(ui · xi) (1)

for any perfect observation (xi, ui). Motivated by the sym-
metry of Equation 1, we define the projector of a unit vector
u ∈ Rd as P(u) = Id − uuT , where Id denotes the d dimen-
sional identity matrix. Note that each P(u) is always Hermitian
and singular, with positive elements along the diagonal and the
property that P(u)P(u) = P(u). In this notation, Equation 1
can be written as qi = P(ui)p = P(ui)xi. Summing over n
measurements gives:

p̃ =

(
n∑

i=1

P(ui)

)−1 n∑
i=1

P(ui)xi = P(U)

n∑
i=1

P(ui)xi, (2)

where P(U) denotes the inverse of the sum of observation
projectors. Of course, P(U) may not exist if the sum of
observation projectors is singular, but it will exist under the
following condition.

Claim 1: The sum of observation projectors is singular if
and only if all observation directions are parallel.

Proof: Certainly if all ui ∈ U are parallel, every column
of every projector P(ui) will be linearly dependent, so their
sum will also be singular. It remains to show the reverse im-
plication. Assume for contradiction there exist two nonparallel
observations u1 and u2, and some finite p′ ∈ Rd such that∑n

i=1 P(ui)p
′ = 0. First observe that by construction, P(ui)p

′

is the closest point on the line from p′ to P(ui)p
′, so the

angle at P(ui)p
′ between the origin and p′ is 90◦. Then by

Thales’ theorem [10], each P(ui)p
′ is also on the d-sphere

with diameter from the origin to p′, and thus exists in one
halfspace H through the origin, with normal at the origin
pointed at and containing p′. Since u1 and u2 are not parallel,
(P(u1)+P(u2))p′ is also strictly in H so summing additional
P(ui)p

′ ∈ H can never yield zero, a contradiction.

This may seem redundant since any pair of measurements is
sufficient to accurately reconstruct p given perfect measure-
ments. However, we can exploit the redundancy of Equation 2
to minimize the effect of noisy data.

B. Noisy Positions

Now consider observations that contain positional error, so
that while direction observations are perfect with ũi = ui,
position observations x̃i are random variables. Assume that
each x̃i is unbiased so that the expected value of the observed
position equals the true position, with E(x̃i) = xi. Let
δi = x̃i−xi be the zero-centered random error of the observed
position. Taking such a set of measurements and applying
Equation 2 gives an estimate p̃x for p:

p̃x = p+ P(U)

n∑
i=1

P(ui)δi. (3)

Since E(δj) = 0, by the linearity of expectation E(p̃x) =
p, and this approach recovers p in expectation. If each δi is

independent from each other, the covariance matrix of p̃x can
be shown to be:

Σ(p̃x) = P(U)

(
n∑

i=1

P(ui)Σ(δi)P(ui)

)
P(U). (4)

If many observation directions are chosen randomly, the
diagonal elements of P−1(U) will increase with expected
value n/d, while the off-diagonal elements will have zero
value in expectation. Thus, for randomly chosen observation
directions, P(U) approaches the identity matrix times d/n
in the limit of large samples. Equation 9 then establishes
that the effect of any single measurement’s covariance on
the estimate covariance decreases linearly with the number of
observations. Particularly, if each position observation is an
identically distributed with covariance σ2Id, in the limit of a
large number of random observations, Σ(p̃x) = O(σ2/n)Id.

C. Noisy Directions

Now consider observations that contain directional error
only, so that while position observations are perfect with x̃i =
xi, direction observations ũi are random variables. Assume
that each ũi is unbiased so that the expected value of the
observed direction equals the true direction, with E(ũi) = ui.
We further assume the small angle approximation so that the
variation of direction is relatively small with ũi ≈ ui + γiûi
where γi = cos−1(ũi ·ui) is the zero-centered angular random
error of the observed direction and the unit vector ûi is in
the null space of ui in the direction of ũi − P(ui)ũi. This
approximation holds to within one percent for γi < 10◦. For
such a set of measurements, a projector can be approximated
to first order as:

P (ui + γiûi) ≈ P(ui)−A(ui, ûi)γi, (5)

where we have used A(ui, ûi) to represent the cross-term
matrix coefficient uiûTi + ûiu

T
i . Applying Equation 2, the

individual variations in P(U) are negligible in expectation,
which to first order gives the following estimate p̃u for p:

p̃u = p−P(U)

n∑
i=1

A(ui, ûi)xiγi. (6)

Since E(γi) = 0, by the linearity of expectation E(p̃u) = p,
again recovering p in expectation. Also if each γi and ûi is
independent from each other and ûi is uniformly distributed
(ũi is symmetrically distributed about ui), then A(ui, ûi) goes
to the identity matrix in expectation and the covariance matrix
of p̃u will be:

Σ(p̃u) = P(U)

(
n∑

i=1

xTi Σ(γi)xi

)
P(U). (7)

Again we find that if many observation directions are chosen
randomly, the estimated covariance decreases linearly with the
number of observations.

D. Noisy Position and Direction

Now consider observations that contain error in both po-
sition and direction using the same models for error as in
Sections II-B and II-C. Then to first order keeping only terms



with zero or one of δi or γi, an estimate p̃ for the position of
p can be obtained:

p̃ = p+ P(U)

n∑
i=1

P(ui)δi −A(ui, ûi)xiγi. (8)

Again, this estimate recovers p in expectation. Assuming that
δi and γi are independent, the covariance matrix evaluates to:

Σ(p̃) = P(U)

(
n∑

i=1

P(ui)Σ(δi)P(ui) + xTi Σ(γi)xi

)
P(U),

(9)
with the same linear decrease in variance with the number of
measurements, as expected.

E. Multiple Landmarks

The previous discussions focused on localizing a single
landmark. In this section, we discuss localizing k landmarks
in Rd. Multiple landmarks can be substantially more difficult
to localize given that it will be unknown a priori which
observation corresponds to which landmark. If we knew which
observations were associated with each landmark, then the
estimation problem would simply reduce to the single land-
mark case. So our goal in this section will be to classify
each observation according the landmark associated with it.
If the landmarks and the observer exist in three dimensions
and are not restricted to a common plane, we can exploit
the dimensional gap between the 3D space and the 1D line
observations to cluster measurements.

Observe that two random lines in a common plane will
intersect with high probability, while two random lines in three
dimensions will intersect with very low probability. Thus, in
three dimensions using an online estimation algorithm, each
time we make an observation, we can check its distance to
either previous observation lines or current landmark estimates
and associate it with the closest observation or landmark. The
first method yields an expected O(n2) estimation algorithm
while the second yields an O(nk) algorithm. In two dimen-
sions, both upper bounds will be slower as observation lines
will cross every other observation line with high expectation,
and all such intersections will be landmark candidates. In our
implementations, we exploit the assumption that the observer’s
sight is bounded i.e. observed landmarks are relatively close
to the observer leading to better performance, only requiring
a search of local intersections. This heuristic seems to work
well when landmarks are sufficiently separated in space.

III. NUMERICAL SIMULATION

A computer simulation was developed to demonstrate the
localization algorithm described in Section II and to observe
the effect of observation error. The simulation was written
using Processing1 and is available as a Mac or Windows64
application by contacting the first author. A one minute video
demonstration of the program can be found on Youtube2.
See Figure 1 for screenshots of the program simulation.
All errors were programmed to be symmetric and normally
distributed. A range of observation variances were evaluated

1http://www.processing.org
2http://youtu.be/rUwpGqJMuuI
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Fig. 1. Screenshots of the simulation program in action. A vehicle moves in
a planar environment and takes observations of its surroundings. Landmarks
are estimated using the proposed localization algorithm. [Top] Initial setup
with many landmarks, observer is red pentagon with cameras observing gray
areas on either side with limited field of view. [Center] The observer sees
a landmark. A visualization of a noisy position and direction observation is
overlaid on the actual position. [Bottom] After moving in the environment
taking observations, a map of estimated landmark positions is created. The
variance of each estimate is visualized as a green ellipse.

which confirmed the estimator to be unbiased, with estimated
variance decreasing linearly with the number of measurements.

The simulation environment itself has many features. Ar-
row keys navigate a vehicle around an planar environment
containing landmarks. When the vehicle observes a landmark,
the noisy observation is used to update an internal map. The
map displays each landmark estimate as an ellipse representing
the covariance of the estimate. The visibility of different com-
ponents of the simulation may be independently toggled on or
off. Further, parameters of the simulation such as observation
sampling rate, camera field of view, and the number and
location of landmarks are all adjustable.



Fig. 2. Test route in Torrejón, Spain plotted on Google Earth. The route is
shown in yellow.

IV. DATA COLLECTION

We implemented the proposed algorithm to automatically
estimate the location of streetlights in an urban environment.
Our algorithm requires observations consisting of two mea-
surements: an estimate of the observer’s position and an
estimate of the direction of a landmark relative to the observer.
To localize streetlights, we used a GPS to obtain the former,
and an IMU and camera to obtain the latter. The IMU gives an
estimate of the orientation of the observer, while the camera
is used to detect a landmark (a streetlight) within its field
of view. Note that when using a mobile sensing framework,
GPS velocity estimates can be used as a replacement for
observer orientation estimates in the absence of IMU data.
Once measurements were collected, the localization algorithm
described in Section II was used to provide estimates of
streetlight positions.

A. Sensors

A u-blox MAX-M8 GPS receiver3 was used to estimate ve-
hicle position. The MAX-M8 module has a quoted positioning
accuracy, Circular Error Probability c =2.0m, referring to the
radius of a circle centered on the true value that contains 50%
of actual GPS measurements given adequate satellite line of
sight. We assume the GPS is an unbiased estimator of position.
The GPS was sampled at its peak sampling rate of 15 Hz.

A UM7-LT IMU orientation sensor4 was used to estimate

3http://www.csgshop.com/product.php?id product=171
4http://www.chrobotics.com/shop/um7-lt-orientation-sensor

Fig. 3. Ground truth locations of streetlights using averaged GPS data.
One position of the observer vehicle is plotted as a black triangle as shown.
The vehicle traversed the route clockwise and used a camera to observe
streetlights to the right of the vehicle. Road sections without marks did not
have streetlights to the right of the vehicle.

vehicle heading. The IMU uses data from an on board magne-
tometer (compass), accelerometer, and gyroscope as input to an
internal Kalman filter to compute a heading angle measurement
accurate to within 0.5 degrees assuming a level IMU. We
assume the IMU is an unbiased estimator of heading angle.
The GPS was sampled at its peak sampling rate of 30 Hz.

A HackHD video camera5 was used to estimate the di-
rection of landmarks relative to the vehicle. The camera was
mounted in a fixed known position and inclination relative to
the vehicle. The camera was capable of capturing at 30 frames
per second, each frame with 1920×1080 pixel resolution. We
used a lens with 4.0mm focal length, F2.0 aperture, so that in
the horizontal and vertical directions, each frame had an 80◦

and 64◦ field of view respectively.

All three sensors were mounted on top of a car with
known relative geometry and driven around at night, with the
camera pointed orthogonal to the direction of travel at known
inclination angle. The test route is shown in Figure 2; the
route was traversed clockwise, and only streetlights on the
right side of the street (the inside of the loop) were observed.
In the following subsection, we discuss retrieving direction
observations ũi from IMU and camera information.

In order to evaluate the accuracy of the proposed localiza-
tion algorithm, independent measurements of each observed
streetlight’s position were required. To take these ground truth
measurements, we manually recorded multiple GPS measure-
ments under each streetlight using the same GPS discussed
above, and averaged the readings. A plot of the calculated
ground truth streetlight locations is shown in Figure 3 (com-
pare to Figure 2). Figure 4 shows a view of these measurements
overlaid on a Google Earth image.

5http://www.hackhd.com/tech.php



Fig. 4. View overlaid onto Google Earth showing the location of individual
streetlights on the southeast road as measured by sampling GPS manually at
each lamp.

B. Direction Observations from IMU and Camera

The theory developed in Section II relied on direction ob-
servations from the observer to a landmark. Here we construct
such observations from an IMU that gives an estimate of
observer orientation and a camera which can detect landmarks.
Consider a camera at xi moving in space and a landmark
located at position p. We assume a pinhole camera model with
focal length f such that landmarks in real space scale to image
space proportionally with the ratio of the focal length to the
normal distance of the landmark to the camera plane [11]. Let
the unit orthonormal basis [x̂, ŷ, ẑ] represent the orientation of
the camera, with x̂ pointing to the left of the image, ŷ pointing
to the top of the image, and ẑ normal to the camera plane. Then
the projection of the landmark on the camera image is:

p′i = f
(p− xi) · x̂
(p− xi) · ẑ

x̂+ f
(p− xi) · ŷ
(p− xi) · ẑ

ŷ. (10)

If the IMU and camera are fixed to each other rigidly, then the
IMU measurements can provide estimates of [x̂, ŷ, ẑ]. Then, a
direction observation can be computed directly as:

ui =
fẑ + p′i
‖fẑ + p′i‖

. (11)

Thus given the location of a landmark in a camera frame,
a direction observation can be computed. This framework is
quite general and can be used with any number of existing
image processors to accurately locate many different types of
objects. Detecting streetlights in camera images taken at night
is a fairly simple image processing task, which we discuss in
the following section.

In general, tracking 3D orientations can be very difficult
to work with and compute [5]. In our experimental setup,
our sensors were attached to a car so the camera position
was constrained to lie in a plane parallel to the road, with
known fixed roll and pitch but unconstrained yaw (heading).
This setup greatly simplified implementation, only requiring a
single angular measurement from the IMU.

C. Lamp Detection

Detecting the location of a streetlight bulb in an image
taken at night can be accomplished using well known existing

Fig. 5. A camera frame showing a detected lamp centroid at the red star.
This image processor is just one of many that can be used to identify city
assets.

techniques. If the view from the camera to the bulb is unob-
structed, the light from the bulb will be seen as a bright spot in
the camera frame. The exposure of our camera was adjusted to
increase the contrast of the bulb to the surrounding darkness.
Standard thresholding, component labeling, and segmentation
techniques can then be used to find the centroids of bright
objects in an image [12] [13]. The standard MATLAB image
processing toolbox was used in our implementation. Lamp
detection using this method was particularly robust even for
lamps obstructed by trees or signs. Additionally, to lower the
possibility of false positives, our camera was tilted upward so
that bright objects far from the street would not be observed,
again exploiting the flexibility of taking 1D measurements in
3D. A representative camera frame with detected centroid is
shown in Figure 5.

V. EXPERIMENTAL RESULTS

The test route was traversed by a vehicle equipped with a
GPS, IMU, and camera. The three sensors were synchronized
and logged using an Arduino Mega 2560 R36. The data was
then post-processed into position and direction observations,
then finally position estimates as discussed in the previous
sections.

Figure 6 shows a sample of estimated locations of street-
lights obtained using the proposed algorithm compared with
ground truth data. The direction of travel of the vehicle is from
right to left. The top image shows the vehicle path in black,
ground truth positions in red, and observations lines in blue.
Only a subset of observations are shown for clarity. The bottom
image shows the same route with the estimated streetlight
locations with the variance of each estimate depicted as an
ellipse. As expected, the variance of each estimate is smaller
parallel and larger orthogonal to the direction of travel because
observations are only taken to one side of each streetlight from
the street. We also notice that estimated position tends to lag
behind the ground truth position by about a meter. This offset
may be explained by the speed of the vehicle relative to the
update response of the GPS. This lag is a function of vehicle
speed and the specifications of the GPS used, and may be
calibrated experimentally for a particular implimentation.

6http://www.arduino.cc/en/Main/ArduinoBoardMega2560



Fig. 6. [Top] A sample of observations taken during a trial experiment.
Vehicle observation positions are shown by black triangles, and observation
directions are shown by blue lines. Ground truth positions are shown in red.
[Bottom] Same route showing estimated positions based on the proposed
algorithm, with each covariance matrix represented by a blue ellipse.
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Fig. 7. A plot demonstrating the linear relationship between the number
of observations of a landmark and the norm of the covariance matrix of the
position estimate of the landmark, obtained by the proposed algorithm. The
correlation coefficient is 0.9942.

Figure 7 shows a plot of the inverse norm of the covariance
matrix ‖Σ(p̃)‖−1 from each estimated landmark position as it
varies with the number of observations of each streetlight. As
predicted in Section II, this relationship is clearly linear with
a correlation coefficient of 0.9942.

VI. CONCLUSION

The landmark mapping algorithm presented in this paper
is very general and can be used to inventory and monitor a
variety of outdoor city assets in conjunction with appropriate
image classifiers, both existing and under active research.
Once the locations of city assets are known precisely, the
same cameras used for mapping can be used to automatically
build realtime image libraries of assets already inventoried,
informing decision making and allowing for automatic main-

tenance prioritization in the future. Because of the magnitude
of urban scale, mobile sensing will be at the center of any
truly Smart city, with municipal vehicles acting as “white
blood cells”, carrying sensors to monitor the health and well-
being of the city. This mapping algorithm allows sensors to
see the city in 3D using nothing more than the ubiquitous
technology already in your pocket. Additionally, because the
algorithm can accept observations in any order, a database
of images taken by multiple observers tagged with position
and orientation, each observing the same object might be used
to build 3D reconstructions, enabling localization from crowd
sourced imagery. A smart phone application implementing this
algorithm is currently being developed.
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