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In their seminal 1996 paper, Bern and Hayes initi-
ated investigation into the computational complex-
ity of origami [3]. They proved that it is NP-hard
to determine whether a given general crease pattern
can be folded flat, when the creases have or have
not been assigned crease directions (mountain fold
or valley fold). Since that time, there has been con-
siderable work in analyzing the computational com-
plexity of other origami related problems. For exam-
ple, Arkin et al. [1] proved that deciding foldability is
hard even for simple folds, while Demaine et al. [4]
proved that optimal circle packing for origami de-
sign is also hard. At the end of their paper, Bern
and Hayes pose some interesting open questions to
further their work. While most of them have been
investigated since, two in particular (problems 2 and
3) have remained untouched until now.

First, while the gadgets used in their hardness
proof for unassigned crease patterns are relatively
straightforward, their gadgets for assigned crease
patterns are considerably more convoluted, and
quite difficult to check. In particular, we found an
error in their crossover gadget where signals are not
guaranteed to transmit dependably for wires that do
not cross orthogonally, which is required in their con-
struction. Is there a simpler way to achieve a correct
result (i.e. “without tabs”)?

Second, their reductions construct creases at a va-
riety of unconstrained angles. Is deciding flat fold-
ability easy under more restrictive inputs? For ex-
ample box pleating, folding only along creases aligned
at multiples of 45◦ to each other, is a subset of par-
ticular interest in transformational robotics and self-
assembly, with a universality result constructing ar-
bitrary polycubes using box pleating [2].

In this paper we prove deciding flat foldability of
box pleated crease patterns to be NP-hard in both
the unassigned and assigned cases, using relatively
simple gadgets containing no more than 20 layers at
any point. A crease pattern is a straight-line graph
of creases on a square paper which all must be folded
by ±180◦ resulting in a flat folding, a piecewise isom-
etry in the plane such that the paper does not inter-
sect itself. We call a crease a valley fold if it folds
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by 180◦ in the flat folding and a mountain fold if it
folds by −180◦. In the figures, mountain folds are
drawn in red while valley folds are drawn in blue. If
a crease may be either a mountain or valley fold in
a flat folding, we call it unassigned. Alternatively, if
we must find a flat folding consistent with a given
assignment of each crease to either mountain or val-
ley, the creases are assigned. In this abstract, we
present the gadgets used in our reductions, but do
not detail the proofs given limited space.
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Figure 1: Unassigned crossover gadget and its only
folded state up to symmetry.

x

x

x xx

x

Figure 2: Unassigned split gadget and its only two
valid folded states up to symmetry.

1 Unassigned Crease Patterns

Theorem 1 Deciding flat foldability of box pleated
crease patterns with unassigned creases is NP-
complete.

As in [3], the reduction is from Not-All-Equal 3-
SAT (NAE 3-SAT): given a collection of boolean
clauses, each containing exactly three literals, deter-
mine whether there exists a truth assignment such
that each clause has either one or two true literals.
However, our gadgets use only creases lying at mul-
tiples of 45◦ from each other and thus exist in the
box pleating paradigm. A signal wire consists of two
parallel creases (a pleat) one mountain and one val-
ley. The assignment of which is which determines
whether the signal is true or false. A crossover gad-
get, splitter gadget, and Not-All-Equal clause gadget
are shown in Figures 1, 2, and 3 respectively. Fig-
ure 4 depicts an example of the reduction applied to
a simple NAE 3-SAT instance.
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Figure 3: Unassigned clause gadget, including illus-
trations for why an All-Equal assignment of the vari-
ables is impossible.
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Figure 4: [Above] An example of the reduction ap-
plied to a simple NAE 3-SAT instance. [Below] A
physical folding of this pattern demonstrating the
satisfying solution (w,x,y,z) = (T,F,T,T).

2 Assigned Crease Patterns

Theorem 2 Deciding flat foldability of box pleated
crease patterns with assigned creases is NP-complete.

Again, the reduction is from NAE 3-SAT. Here, a
signal wire consists of four parallel creases with given
assignment either mountain or valley. The layer or-
dering of which pleat is on top determines whether
the signal is true or false. A crossover gadget, splitter
gadget, and Not-All-Equal clause gadget are shown
in Figures 5, 6, and 7 respectively. Figure 8 depicts
an example of the reduction applied to a simple NAE
3-SAT instance.x
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Figure 5: Assigned crossover gadget and its only
folded state up to symmetry.
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Figure 6: Assigned split gadget, including illustra-
tions for why non-splitting assignments of the vari-
ables is impossible.
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Figure 7: Assigned clause gadget and its only three
valid folded states up to symmetry, including an il-
lustration for why an All-Equal assignment of the
variables is impossible.
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Figure 8: An example of the reduction applied to a
simple NAE 3-SAT instance.
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