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Abstract—In this paper, we consider the safety control problem the Hamilton-Jacobi-Bellman (HJB) equation. This equatio
for Hidden Mode Hybrid Systems (HMHSs), which are a special implicitly determines the maximal controlled invariantt se
class of hybrid automata in which the mode is not available onq the |east restrictive feedback control map. Due to the

for control. For these systems, safety control is a problem lexity of fl ving the HIB i h
with imperfect state information. We tackle this problem by complexity or exactly solving the equation, researsher

introducing the notion of non-deterministic discrete infoomation ~have been investigating approximate algorithms for compgut
state and by translating the problem to one with perfect sta¢ inner-approximations of the maximal controlled invarizet
information. The perfect state information control problem is  [30, 31, 44, 50]. Termination of the algorithm that compuites
obtained by constructing a new hybrid automaton, whose disete axima| controlled invariant set is often an issue and work

state is an estimate of the HMHS mode and is, as such,h b ) tioati ial cl f ¢ that all
available for control. This problem is solved by computing as been investigating special classes or systems allo

the capture set and the least restrictive control map for the tO prove termination [46-48]. The safety control problem fo
new hybrid automaton. Sufficient conditions for the termination hybrid systems has also been investigated within a vigbilit
of the algorithm that computes the capture set are provided. theory approach by a number of researchers [5, 26].

Finally, we show that the solved perfect state information ontrol The safety control problem for hybrid systems when the
problem is equivalent to the original problem with imperfect . .

state information under suitable assumptions. We illustrae the mOde '_S not available for feedback has beer.] rarely addressed
application of the proposed technique to a collision avoidace in the literature. The Safety control prOblem in the caserwhe

problem between an autonomous vehicle and a human driven the set of observations is a partition of the state space was

vehicle at a traffic intersection. discussed by [43]. The proposed algorithm can deal with a
Index Terms—Mode estimation, dynamic feedback, multi- System with finite number of states. It excludes important
agent systems. classes of systems such as timed and hybrid automata. A

number of recent works have addressed the safety control
problem for special classes of hybrid systems with imper-
fect state information [13,15,17,28,54]. In [54], a cotigo
Hidden Mode Hybrid Systems (HMHSs) are a special claggat relies on a state estimator is proposed for finite state
of hybrid automata [29,39], in which the mode is unknowBystems. The results are then extended to control a class of
and mode transitions are driven only by disturbance eventsetangular hybrid automata with imperfect state infoiorat
There are a large number of applications that can be wglhich can be abstracted by a finite state system. In [15,17,
described by hybrid automata models, in which it is natg], jinear complexity state estimation and control altjoris
realistic to assume knoWledge of the mode. This is the case, ére proposed for Specia' classes of hybnd Systems withrorde
example, of intent-based conflict detection and avoidance breserving dynamics' In particu|ar’ discrete time modets a
aircrafts, in which the intent of aircrafts in the environmhe considered in [13’ 15] while continuous time models are con-
is unknown and needs to be estimated (see [45] and #gered in [17, 28]. In these works, the mode is assumed to be
references therein). In robotic games such as RoboFlag [khown and only continuous state uncertainty is considered.
16], the intents of non-team members are unknown and need tq4ere. we consider the safety control problem for HMHSs,
be identified to allow decisions toward keeping the home zog¢ which the mode is unknown and its transitions are driven
safe. Next generation warning and active safety systems fHly by uncontrollable and unobservable events. For thisc
vehicle collision avoidance will have to guarantee Sath;h-E of systems, designing a controller to guarantee Safety is a
presence of human drivers and pedestrians, whose intentiggntrol problem with imperfect state information. In thedny
are unknown [1]. More generally, in a variety of multi-agengf games, control problems with imperfect state informmatio
systems, for example assistive robotics, computer games, ave been elegantly addressed by translating them to pnsble
robot-human interaction, the intentions of an observed®geyith perfect state information [36, 38]. This transfornoatiis
are unknown and need to be identified for control [21].  optained by introducing the notion of derived informatitats
There has been a wealth of research on safety control {fbn-deterministic or probabilistic), which, in the cadette
hybrid systems in which the state is known [5, 25,26, 37, 3Hon-deterministic information state, keeps track of theoge
48-50]. In [39, 48-50], the safety control problem is elebyan aj| possible current states compatible with the systenmotyist
formulated in the context of optimal control and leads tQp to the current time. In the case in which a recursive update
o . o law can be constructed for the derived information state, th
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control problem in terms of this derived information statdée “<” and it is denoted by R, <). If any two elements inP
translate this problem to one with perfect state informmabyg have a unique supremum and a unique infimumPjnthen
introducing a new hybrid system called an estimator, whidh is a lattice. If @, <) is a lattice, we denote for any subset
updates a discrete state estimate in the form of a set ®fc P its supremum by S. For a setX, we denote by 2
possible discrete states. In this paper, we only requiré thhe power set, that is, the set of all subsetXofn this paper,
the discrete state estimate is correct, that is, that itainst we consider the lattice given by 2with order established by
the current mode of the original HMHS at any time, while weet inclusion. This lattice is denoted by‘(Z). For any subset
are not concerned with tightness or convergence guarant8es 2%, the supremumy/ S is given by the union of all sets
[18]. This ensures that an estimator always exists and alloim S. Another partial order that is considered in this paper is
to separatethe estimation problem from the control problemgiven by R" with order established component-wise, that is,
Since the estimator state is measured, the original contfot x = (X, ..., Xn) € R" andw = (wy, ..., W) € R", we say that
problem becomes one with perfect state information. x < w providedx < w; for all i € {1,....n}. We denote this
We solve the new perfect state information control problepartial order by R", <). Let (P, <) be a lattice, an interval in
by providing an algorithm to determine the capture set (tHeis denoted byl[,U]:={pe P|L < p < U}. For any vector
complement of the maximal controlled invariant set) ande R", we denote by its ith component. LeR, denote the
the least restrictive control map. Then, we providéisient set of non-negative real numbers anduetR, — R denote
conditions for the termination of the algorithm that deteves a signal with values irR. Denote the set of all such signals
the capture set. We further illustrate how to construct dy S(R). We define a partial order on this space of signals as
abstraction of the estimator for which the algorithm thdbllows. For any two signals, w € S(R), we say thau < w
determines the capture set always terminates and has as fixevidedu(t) < w(t) for all t e R. Let (P, <) and @, <) be two
point the capture set of the estimator. Finally, we tackle ttpartial orders and consider the mép P — Q. This map is
question of how the perfect state information problem that wsaid to be arorder preserving majif for all p;, p2 € P such
have solved is related to the original problem with imperfethat p; < p, we have thatf(p1) < f(py). It is said to be a
state information. Under a structural assumption and a mosteongly order preserving majb for all pi, p2 € P such that
distinguishability assumption on the original HMHS, we who p;1 < p2, we have thatf (p;) < f(pz). For any mapf : P —» Q
that the two problems are equivalent, that is, their sofutic@nd any subse$ c P, we definef(S) := [Upes f(p).
gives the same capture sets and control maps. Notions from viability theory as found in [4] are here
The problem considered in this paper has much in commegcalled. LetX be a normed space and I& c X be
with two-person repeated games of incomplete informationpnempty. Thecontingent conelo S at x € S is the set
in which one player is informed about the environment stagiven by Ts(x) = {v € S | lim infhaOer = 0}, in
while the other is not [6,27]. In these types of games, thehich ds(y) denotes the distance of from setS, that is,
informed player must take into account how/hir actions ds(y) := inf.klly — 2. WhenS is an open set, the contingent
may reveal information that will flect future payfis. The cone toS at any point inS is always equal to the whole space.
control of a HMHS can be viewed as a game between theA set valued mapF : X — 2% is said to beMarchaud
controller (uninformed agent) and the disturbance (infedm provided (i) the graph and the domain Bf are nonempty
agent), in which the actions of the latter can reveal infaioma and closed; (i) for allx € X, F(x) is compact, convex and
on the current mode of the hybrid automaton. The equivalencenempty; (iii) F has linear growth, that is, there exist> 0
result of this paper implies that the best strategy for thsich that for alkk € X we have sufiivi| | v € F(X)} < a(|Ix]|+1).
disturbance is simply to keep the maximal uncertainty fdssi A set valued mapF : X — 2% is said to beLipschitz
on the mode. In doing so, it will in fact not reveal usefutontinuous onX if there isA > 0 such that for allx;, x; € X
information to the controller regarding its range of action we have thaf (x1) € F(X2) + Al[x1 — X2||B1(0), in which B1(0)
This paper is organized as follows. In Section II, we recal a ball inX of radius 1 centered at 0.
basic definitions and concepts. In Section Ill, we introduce
the HMHS model and its information structure. In Section [1l. Hioben Mobpe HYBRID SysTEMS

IV, we introduce the control problem with imperfect state A hybrid system model with hidden modes is a hybrid
information (P_roblem 1) and its translation to a prOble_rrhNitautomaton [39] in which the current mode of the system
perfect state information (Problem 2). We then provide ﬂ]g unknown and mode transitions are driven by disturbance

solution_ to Proplem 2 i.n Section V. W? consider the prObIe'(I.\/ents only. This model is formally introduced by the follow
of termination in Section VI. In Section VII, we show theing definitions

equivalence of Problem 1 and Problem 2. In Section VIII, we

illustrate the application of the proposed control aldoris to  Definition 1. A hybrid system with uncontrolled mode tran-

a collision avoidance problem at a fiiia intersection. sitions is a tupleH = (Q,X,U,D,%,R, f), in which Q is

a finite set of modesX is a vector spacet) is a set of

control inputs;D is a bounded set of disturbance inpuls;

is a finite set of disturbance events, which includes a silent
In this section, we introduce some basic notions and defvent denoted; R: Q x X — Q is the discrete state update

initions. We employ basic notions from partial order theorgnap; f : X x Q x U x D — X is the vector field, which is

[12]. A partial order is a setP with a partial order relation piecewise continuous oK x U x D.

Il. BASIC NOTIONS AND DEFINITIONS



The vector fieldf is allowed to be piece-wise continuousQ has a non-zero minimum dwell time (as it would be enforced
in order to model switches in the dynamics determined Hyy suitable interaction between guards and invariants). As
submanifolds in the space of states and inputs. We denoteébgonsequence, any mode @ can instantaneously transit
(g,X) € Q x X the hybrid state of the system. Similarly, weto any element in its reachable set ReaghEven though
denote by (,d) € U x D the continuous inputs to the systenthis structure limits the generality of the model, it stilkilv
and byo € X the disturbance event. We defifRéqg, €) := q captures application scenarios of interest, as described i
forall ge Q. Let {r{}iq cR for 1 ={0,1,2,..} with 7f <7/,  Section IV-B.
be the sequence of times at whiolfr)) € /e ando(t) = €
for t ¢ {t/}ia. Let T := Uig[7i,7{)] in which 7; < 7/ = 711
with 7o = 0, and the *)]” parenthesis is closed (‘]) if{ is
finite and open (*)") if it is not finite. Then, we define the
discrete and continuous trajectoriestbf that is,q(t) and x(t)
for t € 7 as follows.

A. The non-deterministic discrete information state

For a signals : R, — S, we define its truncation up to
timet ass : [0,t] —» S and its truncation up to tim& as
s :[0,t) — S. At time t, the measured signals bff are given
by ue- andx, in which xg := X,. Furthermore, the knowledge
Definition 2. Given initial conditions o, Xo) € Q x X, of the functionx; : [0,t] — X implies that also the function

the discrete trajectory @) for t € 7 is such that(ziz1) = X : [0,t) — X is known.
R(q(t)), o(r])) and q(t) = q(r;) for t € [r, 7] if 71 < 7]
with q(7o) = o;
the continuous trajectory(® for t € 7~ is such thai(t) =
f(x(t), q(t), u(t), d(t)), d(t) € D for t € [rj, 7] with 7; < 7]
and x(ti41) = X(77) with X(70) = Xo. The availableinformation on the system mode at time
must be derived from the history sigrg(t), in which »(0) =
(0o, 0, X0, ®) contains information on the initial state of the
system. We define the set of all possible current modes of the
system compatible with the history. This set is called the-no
deterministic discrete information state and is formakyied
as follows in analogy to what is performed in the theory of
Spmes with imperfect information [38].

Definition 6. The history of systemH at timet for t > O is
defined as)(t) := (Qo, Ut-, Xt, X-), in which forge € Q is the
initial mode information.

Since we can have thaf = 7,1, multiple discrete transi-
tions can occur at one time. The valuexammediately before
and immediately after a set of transitions occurring at draes
time is unchanged. The vector fiefdimmediately after a set
of transitions occurring at the same tirhés evaluated on the
value thatq takes after the last transition occurred at timé
is therefore useful to define also the discrete and contisiu
flows of H as follows. Leto : 7 — %, u : 7 — U, and Definition 7. The non-deterministic discrete information state
d: 7 — D be the disturbance event, the continuous contrelf timet > O for systemH is the setq(#(t)) c Q defined as
and the continuous disturbance signals. _

g€ Q|3 € o 0 St. q=q(t, 0o, )

Def|n|t|on_3. For |n|t|.al cor_1d|t|on €lo> Xo) € Q x X, () == | and3 d st.x(7) = fF(X(1). bq(. Gor o). U(r), d(7))
the discrete flows defined aspq(t, o, o) 1= q(sup, . 7i) forall 0<r <t
for all t > O;
the continuous flovis defined aspx(t, (Go, Xo), U, d, o) := Hence, a modeg is possible at timé provided (a) there is a
x(t) in which X(t) = f(X(t), ¢q(t, 0o, @), U(t), d(1)), d(t) € discrete state trajectory starting from a moderthat reaches
D for all t > 0. g at timet and (b) such a discrete state trajectory is consistent

with the continuous state trajectory up to tirhelt follows

Thereforegq(t, o, o) is a piece-wise constant signal that Afhatalt) € an(t) for all t and thatam(0)) = Reach
time t takes the value ofl at the last transition that occurred atq(V) € gln(v) for all t and thatg(n(0) eachfo)

before or at timet. Wheno(t) = € for all t, we denote the

corresponding continuous flow la(t, (Qo, X0), U, d, €). V. ProsLEM FORMULATION

— . , i In this section, we first employ the notion of non-
Definition 4. A Hidden Mode Hybrid SystettMHS) is @  geterministic discrete information state to formulate shéety

hybr.id system with uncon.trolled mode transitions in WhicRq g problem with imperfect state information. Then, we
q(t) is not measured angp is only known to belong to a setangjate this problem to one with perfect state infornratig

o € Q. introducing a mode estimator.
Therefore, in a HMHS onl(t) is measured and its evolu-

tion is driven by hidden mode transitions. In the reminder Qi Safety control prob]em with imperfect mode information

this paperH denotes a HMHS. Let Bad c X represent a set of unsafe continuous states.

Definition 5. Let g € Q. The set of modeseachablefrom We consider the problem of determining the set of all initial
g under the trajectories dfl is denoted ReachfC Q and is informations (o, Xo) for which adynamic feedbacknap does
defined as React)( = Ug,eq U0 Us ¢4(t. Go. 0). not exist that maintains the trajectox(t) outsideBad for all
time. For this purpose, we first define the closed loop system

Remark1l. The hybrid automaton model considered in thi under a feedback map: 29 x X — U.

paper is a special case of more general models [29, 39].
Specifically, we assume that there is no continuous staé, re®efinition 8. Consider a feedback map : 2° x X — U.
that mode transitions cannot be controlled, and that no rmodeThe closed loop system His defined as syster, in which



U, dq(t, 0o, o) = ¢q(t, 05, o) for all t > 0. This implies that the

Ly | 4 3 feedback mapr* is such that? (t, (0}, %), d, 0”) ¢ Bad for
E' m\ all t, o7, andqy € Reachg). Hence,x, ¢ Creachg)- [ |
e . B3 Problem 1. (Safety Control with Imperfect State Information)
! - Determine the capture s€& and the set of feedback maps
Autonomous v? SUCh that If qg’ XO) ¢ C! then (]—(T](t)), ¢§(t’ (qO’ X0)9 d’ 0-)) ¢ C

‘ forallt>0,d, o, andq, € Qo.

Human Driven /p2:
1 B. Motivating example

In this section, we present an example in the context of

cooperative active safety at ffi@ intersections [1], wherein

a controlled vehicle has to prevent a collision with a non-

€

g=a g=c g q:b

(acceleration)) 5+ [ (coasting) \ (braking) controllegnon-communicating, possibly human-driven, vehi-
_( flw) _( flzv) ._( hlzv cle (Figure 1). A possible approach to tackle this problem
- ( fZEzsa)d) - ( fZl(zrc:d) B ( -fZEzsbrd) ) ( g ) p pp p

is to treat the non-communicating vehicle as a “disturbance

Fig. 1. (Up) Two-vehicle Conflict Scenario. Vehicle 1 is equipped’jlnd emplqy available safety con_trol techniques for hybrid
with a cooperative active safety system and communicatés tve SyStems with measured state. This approach, however, leads
infrastructure wirelessly. Vehicle 2 does not communiocatth the to conservative controllers, which are not acceptable ag th
infrastructure. A collision occurs when both vehicles gocithe  result in warning&ontrol actions that the driver perceives
tcfczﬁiggaasvl/ﬁerﬁfﬁ;ntgnvgﬂ\'ﬂﬁ 3e%isclt2,? gg‘étzr?)om;kgjr? d‘gg(ﬁ as unnecessary. Therefore, in this application it is ctucia
model H, in which f, and f, are given by equations (1-2). to exploit all the available sensory information to reduge a
much as possible the uncertainty on the non-communicating
vehicle. For the controller on board the autonomous vehicle
_ the human-driven vehicle is a hybrid automaton with unknown
u(t) = =(q(n(t)), x(t)) for all t > 0. The continuous flow oH"  state. A related but flierent application is the one in which
is denotedpi(t, (do, %), d, o). a single vehicle can receive inputs from both a human driver

The set of all initial informations d, %) for which gnd an on-board contro!ler as coqsidered, for example, @l [4
in the context of a red-light violation problem. As opposed t
our application, the resulting hybrid automaton to control
[40] has known state.

Since both vehicles are constrained to move along their
Definition 9. For Bad ¢ X, the capture seffor systemH is |anes (see Figure 1), only the longitudinal dynamics of the
defined asC := {(Go. %) € 29 x X | ¥ 7, Go € Go. 0, d. t>  vehicles along their respective paths are relevant. The lon
0, st. ¢%(t, (do, %), d, o) € Bad. gitudinal dynamics of vehicle 1 along its path are modeled

. . > : _

The following alternative expression of the capture & tr;]e r’\qu"‘.‘t'%r?pll J kllu — kovy — |d(3' n (\;vh||ch pl’hvl h

(obtained directly from the definition) is used in this paper are t e ongitudinal displacement and speed along the path,
respectively,u represents throttlbraking, ks > O represents

Proposition 1. For all g € 22, let the mode-dependent capturehe static friction term, anéva with k, > 0 models air drag

set be defined asgC= {x, € X |V 7, 3q €0, o, d, t > (see [52] for more details). The control inputranges in the

0, st. ¢4(t, (do, %), d, o) € Bad}. Then, C= Uge(d X Cq). interval [u,, uy] for given maximum braking action, < 0 and

maximum throttle actioruy > 0. For vehicle 2, we assume a

model given byp; = B4 + d, in which d € [-d, d] for some

Proof: We first show thatCq C Creacng- L€t X ¢ d >0 andq represents thenknowndriving mode that can be

Creachg- Then, there is a feedback map such that for all acceleration mode, denotesl coasting mode, denotez] and

0o € Reach@) andt > 0 we have thaw}, (t, (qo, Xo),d, o) ¢ braking mode, denoteld. For each modeg, has a diferent

Badfor all d, o, andn with n(0) such thai(p(0)) = Reach§). value representing the nominal acceleration correspgnidin

In particular, suchz* is such that for allg, € q andt > 0, that mode. For more details on modeling human (controlled)

#% (. (9o, %), d, ) ¢ Bad for all d, o, andn with p(0) such activities through non-deterministic hybrid systems, tisader

that g(n(0)) = Reachg). This, in turn, implies thai, ¢ Cg is referred to [19,20]. Vehicle 1 receives information abou

from the definition ofCg and the fact tha(0) = (0,0, X, ) the position and speed of vehicle 2 from the infrastructure,

implies q(n(0)) = Reachq). which monitors speed and position of vehicles through road-
We then show thaCreachgr € Cg. Let X, ¢ Cg. Then, there side sensors. We assume that there are a lower baynend

is 7* in which q(5(0)) = Reach@)) such that for allg, € g, an upper boundmax on the achievable speed of the vehicles

o, d, we have that? (t, (0o, %), d, o) ¢ Bad for all t. For all due, for example, to physical limitations (i.e., vehiclesoot

g; € Reachg), there iso- andq, € g such thatq(0, go, o) = ;.  go in reverse and have a finite maximum achievable speed).

Therefore, for any piece-wise continuous siggg(t, g,, o) The resulting HMHSH = (Q, X, U, D, %, R, f) modeling the

with g, € Reach@), we can findo and g, € q such that system is such tha® = {a,b,c}, X = R* U = [u,uy], and

there is no feedback map that maintains the trajectory
&% (t, (0o, %), d, o) outside Bad for all g, € qo, o, andd is
called thecapture setand is formally defined as follows.

Proposition 2. For all qe 29, we have that &= Creacif)-



D = [-d,d]. Denotex = (X1, X2, X3, X4) With X3 = p1, % =
Vi, X3 = P2, X4 = Vo. Let @ 1= kiu — kgxg — k3. The vector
field f is piece-wise continuous and given byx,qg,u,d) =
(f1(x, u), f2(x, g, d)), with

fi(x,u) = {

if X2 € (Vmin, Vmax)
Or Xp > Vmax anda > 0

(X2, @),

(X2, 0), 1)

(X4,ﬂq +d), if X4 € (Vmin, Vmax)
fa(x,0,d) = ¢ (x4, 0), if X4 < Vmin @ndfq+d <0
Or X4 > Vmax andgq +d > 0.

in which X(7i,1) = X(7)) and X{(ro) = %. As performed for
systemH, we can define the flow of system. Specifically,
the discrete flow ofl is denotedbq(t, o, y) := G(sup, 7i) and
anycontinuous flow oH is denoted bys(t, (Qo, %o), V, d, y) :=
X(t) for all t > 0. Wheny = ¢, it is useful to extend
the definition of this flow to whengis any element in
29, that is, ¢x(t, (0, %o), v, d,€) = X(t) with X(t) such that
() € f(X(t), g, v(t), d(t)) for all t > 0 andx(0) = X,. Note that,
however, this may not be realizablelhif g ¢ Q. Also, for all
o € O, we denoteReach@p) c O the set of reachable modes
from Qo and it is defined aReach() := Uwo Uy ¢4(t, Go, ¥)-
Then, we have the following definition of an estimator for

We assume that the human driven vehicle can transit from

acceleration, to coasting, to braking [35]. This scenaaio be
modeled byE = {¢, 0*} andR : QxX — Q such thaR(a, o) =
c andR(c, o) = b. Here, we assume that < 0, 8. = 0, and

Definition 10. The hybrid system with uncontrolled mode
transitionsH with initial state @, Xo) € Q x X is called an
estimatorfor H provided

Ba > 0, with d < |4 < 2d for q € {a,b}. This system is a (i) for all inputoutput signalsi, x) of H and all initial mode

HMHS, in whichq, = {a, b, ¢} and it is pictorially represented

in the right-side plot of Figure 1. Finally, the unsafe sejiigen

informationsd, € O, there is an event signglin H such
that ¢4(t, Go, ¥) > q(t) for all t e 7

by Bad = {x | (x1,X3) € [L1,U1] x [L2, U2]} corresponding to (ji) for all y e Y andd e Q, we have thaR(g, y) € Reachg);
both vehicles constrained to their paths being in the cdnfligi) for all (%, §v,d) € X x Q x U x D, we have that

area of Figure 1.

C. Translation to a perfect state information control preiv

f(% G Vv, d) = Ugeq F(X 0, v, d).

The dynamics ofk ‘model for a suitable event signglthe
set of all possible dynamics af in systemH compatible

In order to solve Problem 1, it is necessary to compuigith the current mode estimatgt). Note that inH we can
the setq(xn(t)). Computing this set from its definition ispgye thatr, = 7o with the modeq(z)) taking any value
impractical as one would need to keep track of a growing Reach¢). Since by (i) of the above definition, can
history. Hence, it is customary to determine it recursivelyq any element ofd, we must have that for al € O
through a suitable update law [38]. A wealth of research GRgre isy € Y such thatR(@G,y) = Reach@) to ensure
observer design and state estimation for hybrid systems hgs; #4(t, G, y) > q(t). According to the above definition, an
been concerned with determining such an update law aggimator always exists as one can choose, for exarfpte,
in particular with its properties for special classes of yb 5. Reach@)}, Y = {e, yol, R such thatR(Ge, Yo) = Reachd),
systems [7-9,14,16, 18, 23,53]. Specifically, key propsrti % = %o, andy(¥}) = Yo. This implies thatq(7o) = go, that
when considering discrete state estimation, are correslnea(%) = Reach(), and thatq(#,) = Reachgy) for all t > 7.
tightness, and convergence [14, 18]. Correctness reqhiegs Hence, ¢4(t, Go,Y) = Reach(,) always containgy(t) for all
the estimated set of modes contains the true mode at any tifg;7- asq(t) e Reach¢p) for all t € 7. An example of how to

tightness requires that the estimated set of modes contaigpstruct a less trivial estimator is provided in the foliogy
only modes compatible with the system history and dynam'cr%ragraph.

convergence requires that the estimated set converges to a

singleton. In this paper, we only require that the discredées Examplel. Consider the HMHSH = (Q,X,U,D,%,R f), in
estimator has the correctness property. We are not corserndich X = R%, Q = {a,b}, U =0, D = [-d,d] c R for d > 0,
with tightness nor with convergence guarantees, whichllysua = {e}, and f(x, d) = (xz, 8¢ + d), in which g4 is a parameter
require observability assumptions. Hence, a discretee stdthose value depends on the magleThis system can model,

estimator always exists as, for exampigt) = Q for all t
is also an estimator. This allows us separatethe design of
the estimator from that of the control map.

More formally, letH = (Q,X,U,D,Y,R f) be a hybrid
system with uncontrolled mode transitions with stageX| e
Q x X, in which @ c 2°, and disturbance evenyse Y. Let
{#}er € R for [ = {0,1,2,3,...) with # = %1 < 7/, be
the sequence of times at whiglir)) € Y/e andy(t) = € for
t ¢ (¥}, DenoteT := Uil#;, #)] in which # < # =%/,
and7y = 19 = 0. For allg € Q, we defineR(§, ¢) := §. Let
the initial state bedy, %) € Q x X. The trajectories o are

for example, the non-communicating vehicle of the appiicat
example of Section IV-B, in whichad” is acceleration mode
and ‘b” is braking mode. Let the initial information bed, X,),

in which g, = Q. We letQ = {61, G2, G3}, in which g, = Q,

g2 = {a}, anddsz = {b}. The signaly determines how to transit
among these modes on the basisxj so to guarantee that
#4(t, 0o, y)  q(t). SinceR does not allow transitions between
a andb, the only transitions allowed bR are fromdj to 6
and fromd to Gz by property (ii) of Definition 10. Then, let
Y = {Ya, Vb, €}, in Which ya is such thatR(@s, V=) = G2 andyp

is such thatR(G, yb) = Gs. Let 3(t) = # [, %(r)dr, t> T

defined as in Definition 2, in which the continuous state obeged definey(t) asy(t) = ya if |3(t) — Bol > d, y(t) = yp if

the diferential inclusion
(1) € f(X(t), §(t), v(t), d(t)), d(t) € D, fort e [%,7/], 7 < 7/,

IB(t) — Bal > d, andy(t) = € otherwise.

Note that while the discrete state of systétris unknown,



the discrete state of systekh is known as its initial state is y’ such thatrg = T R, Y () = Reagh(q)_, andy'(t) = €
known and bothg(t) and X{t) are measured. Hence, we definéor all t > 7; (note that ay for which R(q,y) = Reachq)
the closed loop system undestaticfeedback map as follows. must always exist inY by the definition of an estimator).
This implies thatgg(t,q,y’) = ¢¢(0,0,y") = Reachq) for
all t. In such a casen’/(X) := a(Reach(),X) is a map
from the continuous state only as the first argument is al-
. g . ways constant. Hence, the flow(t)' = ¢%(t, (0, %), d,y’)
is denoted byd"(t, (G, %), d.y) and the continuous flow by (ovcries &1y e f(x(t), Reach), #/ (%), d(t) for all t.
95t (G, %), d.y). In turn, any x{t) that satisfies this also satisfiex(t) =
Definition 12. The capture set for systemd is denotedC  f(X(t), q(t, Go, @), 7' (X(1)), d(t)) for all g, € g and allo. As
and is given byC := {(Go, %) € O x X|V#, 3d,y,t > a consequencer is such thatp? (t, (go, %), d, o) ¢ Bad for
Ost. somapg(t, (Tos X0), d, y) € Bad}. allt >0, alld, all o7, and allg, € . This, in turn, implies that
Xo ¢ Cg. [ ]

We first solve Problem 2 and then address the question of

Definition 11. Consider a feedback map ZA(jz( X — U.
The closed loop systerdl” is defined as systerH, in which
v(t) = A(¢g(t, 0o, Y), X(t)) for all t > 0. The flow of H*

Proposition 3. Let q € Q and define the mode-

dependent capture sefg = {X € X|V7&, 3dy,t > her this broblem is equvalent o Problem 1
0t somapi(t, (G %), d,y) € Bad). Then, we have thaf = ISP IS equiv :
UaEQ (q g CG)- V. SoLuTION TO PROBLEM 2

Problem 2. (Sa_fety Control with P_erfect State Information) gjnceH is a hybrid system with uncontrolled mode tran-
Let H be an estimator foH. Determine the capture s€tand  gjtions, it has more structure than the general class ofidhybr
the set of feedback mapssuch that if o, Xo) ¢ C, then all 5 tomata. We exploit this structure to provide a specidlize
flows (@q(t, Go, ¥), ¢5(t, (G, %), d.y)) ¢ C for all t = 0, d, and jerative algorithm for the computation of the capture sed a
Yy of the feedback maps. The proofs are in the Appendix.

Definition 13. Consider the feedback map:"QOx X - U
and an estimatoH. The estimator-based closed loop system\, Computation of the capture sét
HZ is defined as systerd, in which u(t) = 7(44(t, 0o, ¥), X(t))

In order to compute the s€t, we introduce the notion of
forall t > 0.

uncontrollable predecessor operator.
Definition 14. We say that systeti® with initial state o, Xo)
is safe provideddp, X,) ¢ C implies thatx{t) ¢ Bad for all
t, d, andy. Similarly, we say that systerk? with initial
information @, Xo) is safe providedds, x,) ¢ C implies that
X(t) ¢ Badfor all t, d, ando-. This set represents the set of all states that are mapped to
when the mode estimate is constant and equa.tdhe
llowing properties of the Pre operator follow from the tfac
that it is an order preserving map in both of its arguments.

Definition 17. For a setS c X andq € Q the uncontrollable
predecessor operatdior H is defined as Prg(S) = {x, €
X|Va3d,t > 0,s.t. somei(t, (X%.Q),d, €) € S}.

Definition 15. (Weak equivalence) We say that Problem 1 a
Problem 2 areveakly equivalenprovided that (i) ifH* with
initial state Qo, Xo) is safe then alsbig;r with initial information R
(Go» Xo) is safe; (ii) for allge @, we have thaCg ¢ C. Proposition 5. The operator Pre Q><>2(X — 2X has the follow-
g :()S c g,S): (ii
Definition 16. (Equivalence) We say that Problem 1 ang rge(%r(l)jpr:(rge;);o:r E;”rg(z %?rzi(iji)ssrez @ (|S)l)SC_PPrreéq,SSZ)),’ (fl(l))r
Problem 2 areequivalentprovided that (i) they are weakly . S; c S;; () Pre(q’l, S') c Pre(qz,’S), for all él C O
equivalent; (i) for allq € Q, we have thaCg = Cg. (v) Pre(Gu, Pre(6p,S)) = Pre(@.S), for all 8 < a1, (vi)
Weak equivalence guarantees that any feedbackstapt™ Pre(Go, SoUPre(Gs, S1)U. .. UPre(Gn, Sn)) = Pre(Go, SoUS1U
keepsH” safe keeps also systehtf safe. Equivalence guar----U Sn) for  c go for all i.
antees that systerd has the same mode-dependent capture\ye use for allg € O the notationR@GY) = |

q €
sets as systerHl.

R@.Y) | y € Y}, in which we setR(G,y) := 0 if R@G.y) is
Proposition 4. Problem 1 and Problem 2 are weakly equivanot defined for somg € Y.

lent. Proposition 6. The setsC, for all § e Q satisfyCq =

Proof: (i) If H* is safe with initial state do,%,), we Pre(6i, Ujq caq.v) Co U Bad).
have that @o,%) ¢ C implies that x(t) ¢ Bad for all
t, d, and y. In particular, this is true fory such that
#4(t. 0o, y) > q(t) for all t and hence forx{t) such that
Xt = f(X (), at), 7(¢a(t. Go, y), X' (1), d(1), d(t) € D, and
hence forx(t) trajectory ofHZ.

(i) We show thatCz c Cg for all g € Q. Specifically,
we show that ifx, ¢ Cq thenx, ¢ Cq. If xo ¢ Cg, there
is a feedback mapr such that for alld, y, t > 0 all Proposition 7. The setW := (Q x X)/C is the maximal
flows ¢’;§(t, (0, %), d,y) ¢ Bad In particular, this is true for controlled invariant set foH contained in(Qx X)/(Qx Bad).

Definition 18. A setW c Qx X is said acontrolled invariant
setfor H if there is a feedback mapsuch that for all §o, Xo) €
W, we have that all flows(t, (Go, Xo), d,y) € W for all t, d,
andy. A setW c Q x X is the maximal controlled invariant
setfor H provided it is a controlled invariant set fét and
any other controlled invariant set fét is a subset of\V.



Let Q = {01, ...,0u} with § € 22 fori € {1,...,M}, S; € B. The control map
2% fori e {1...,M}, and defines := (Sy,...,Su) € (2)™. To determine the set of feedback maps that keep the

We define the maf : (%) — (2™ as complement ofC invariant, we employ notions from viability
Pre(al, U|j|qjgﬁ(ql,y)} Sj U Bad) theory_
GS) = : Definition 19. A set valued mafF : X — 2X is saidpiecewise

Pre(du. U o Si U Bad Lipschitz continuousn X if it is Lipschitz continuous on a
(qM UiiigjeR@u 1 Si ) finite number of sets; c X fori = 1,...,N that coverX, that

Proposition 8. Let S:= (S, ..., Sv) be a tuple of sets;& X s, UN X =X, andX nX; =0 fori # j.

----- The next result extends conditions for set invariance as
found in [4] to the case of piece-wise Lipschitz continuoets s

Let Z := (2X)™ represent the set of all M-tuples of Subsetvalued maps. This extension is required in our case because

of X and define the partial ordeZ.(c), whereC is defined the vector fieldf is allowed to be piece-wise continuous.

component-wise. One can verify th& : Z — Z is an Proposition 9. Let F : X — 2X be a set-valued Marchaud

order preserving map (it follows from property (iii) of themap. Assume that F is piecewise Lipschitz continuous on X.

Pre operator from Proposition 5). A closed set & X is invariant under F if and only if Ex) C
Ts(x) for all xe S.

controlled invariant set foH.

Algorithm 1. S°:=(S§, S9,...,S9,) = (0...., 0),

St = G(s?) For simplifying notation, for each modpé(? define the set
while S¢1 % sk valued mapf : XxQxU — 2Xasf(X g,u) = {[()?, g, u, d),dg
Sk = G(SK) D} for all (X, g, u) € XxQxU. DefineLq := X\Cq forall § € Q
end. and consider the set valued map defined as
TG, %) = (ue U | (& G,u) c T, (M) €)

If Algorithm 1 terminates, that is, if there isl&* such that
SK' = (SK,..,SK) = (SK+1,..,SK*1) = SK'+1 we denote Theorem 2. Assume that : QxX — U is such that for alj €
the fixed point byS*. Q the set-valued map (K, §) := (X §,7(X §)) is Marchaud

and piecewise Lipschitz continuous on X. Then, thg@et
Theorem 1. If Algorithm 1 terminates, the fixed point' 8  X)\C is invariant for H” if and only if 7(§, %) € T1(, X).
such that S = (Cq;. .. Cau). Proof: (<) Assume thatr(g, %) € II(G,%X) and that

Proof: If Algorithm 1 terminates, then there * > 0 (G(fo), X(70)) ¢ C, we show that all¢(t), X(t)) ¢ C for all t >
such thaiG(L)N" = G(L)N'*! = S*, in which L = 0. Thus,S*  7o- This is shown by induction argument on the transition times

is a fixed point ofG. To show that it is the least fixed point,7i- (Base case) By assumption we have tiggtd), X(7o)) ¢ C.

consider any other fixed point &, calleds. SinceL <pg and (Induction step) Assume thati(fi), X(i)) ¢ C. We show that

G is an order preserving map, we have tgtL) < G(3) = 5, this implies €t). X(t)) ¢ C for all t € [7i, 7i,1], in which

G2(1) < G(B) = B,...., GN'(L) < B. SinceGN'(L) = S*, we Tix1 = T{. Thisin turn is equivalent to showing theft) ¢ Cq)

have thatS* < 8. ThusS* is the least fixed point o6. for all t € [7i,7]] and X(Tis1) ¢ Cqz.y). SinceCery) € Cery

. - N .~ .. by the properties of the Pre operator and by Proposition 6,
Proposition 6 indicates that the 8t= Useq(di X Ca) IS then if () ¢ Gy, . also X(#) ¢ Cyu.. Therefore, it is

such that the tuple of set€4, ..., Cg,) is a fixed point ofG. enough to show t+ha1x(f) ¢ é(‘q(%i) for all t e [#.7]. If

Assume that such a tuple of sets is not the least fixed pomt_ = ; , o

o A 7, = Tj, then sincex(7]) = X(7;) we have thatx(7i) ¢ Cqs,).
:)Jp(lse' (;h's wgpl)leiz ;T?; ?E;Z(?r;o;ﬁé g‘zi)nsslijggrt&f ;2?5 Iﬂ T <1, forte [%i,l%i), the trajectoryx(t) satisfiesx(t) €
A o S S A I S f(X(t), 4(7i), 7(A(71)) = F(x §(7i)). Sincex(q, %) € (4, %), it
VAV,z_ (QAX X)/ Ug (G XAqu) and the new seW defined as follows thatF (X, q(7i)) € Ti,,(X). Proposition 9 thus implies
W= (QxX)/ Uieia...m (@i X Si). By Proposition 8, these two thatLgc, is invariant byF. Therefore, we have thaf(t) € Lq,)
sets are both controlled invariant and are both contalnedfg} all t € [#;,%]. Thus, X{t) ¢ éq(”) for all t € [#, %

s bl L] Ti s il

(QxX)/(Qx Bad). SinceW ¢ W', we have thaW is notthe . The fact that if{g, %) ¢ I1(@, %) the set @ x X)/C is
maximal controlled invariant set contained in the compleme,, ;: invariant forH” follows from Proposition 9. -
of Q x Bad This contradicts Propos_ition 7. .Therefolre, the Given the current mode estimate & control map as given
tuple Cg, .., Cqy,) must be the least fixed point @. Since ;, Theorem 2 is one that makes all the possible vector fields
the least fixed point of5 equalsS™ by the first part of the it oytside the current mode-dependent captur€gebnce
proof, it follows that Cg, ..., Cgy) = S*. the mode estimate switchesdg the current mode-dependent
This result is based on the assumption that Algorithm dapture set also switches to the new mode-dependent capture
terminates and hence it isfgient that the mas is an order setég/, which is (by Algorithm 1) contained in the previous
preserving map. A stronger property f@&; such as omega- oneC,. At this point, the feedback map switches to one that
continuity [34], is required for the result of Theorem 1 tanakes all the possible vector fields originating frgmpoint
hold if termination of Algorithm 1 is not assumed. In Sectioutside the new current mode-dependent capturé@eNote
VI, we address termination. that control map (3) guarantees safety for any choice of an

.....



estimator. However, a coarser estimator leads to largeremotheorem 3. Algorithm 1 terminates if all the kernel sets
dependent capture sets to be avoided at any time and, dees, ... ker, have a maximal element with respect to the
consequence, the control actions are more conservative. partial order (Q, €).

This theorem provides an easily checkabléisient condi-
VI. TERMINATION OF ALGORITHM 1 tion for the termination of Algorithm 1 based on the struetur
) o ) ) of the mapli. Note that a corollary of this theorem is that if
There are two main diculties in the implementation of oygtempj is such that all of its kernel sets are singleton€in
Algorithm 1. The first one is the exact computation of the Prgq Algorithm 1 terminates fdfi. The proof of this theorem

operator, which is known to be a hard problem for genergl i, the Appendix. Here, we illustrate the logic of the proof
classes of nonlinear and hybrid dynamics and general sesyf,q the concept of kernel set on a simple example.
are still lacking. Hence, research has been focusing oriapec

classes of systems for which such an operator can be exa&gmple 2. Consider a simple instance ofR@Q,Y) in
computed [46-48]. The secondfifiulty lies in guaranteeing Which Q = {G1.%}, Y = {ey}, RGuy) = G, and
the termination of Algorithm 1. In this section, we addrdss t R(Gz,y") = . That is, we have one kernel set equal
termination of Algorithm 1, that is, the existence offipite t0 {01, 0z}. Because of the loop betweem and d, Al-
N such thatSN = SN*1, We then discuss the problem of thedorithm 1 may not terminate. Here, we show that if we
exact computation of the Pre operator. assume that, for examplep 'C G, then Algorithm 1 ter-
For the termination problem, we first provide flicient Minates in three steps. In this example, we have fhat
conditions onH for which Algorithm 1 terminates. Then, we(S1,S2) and G(S) = (Pre@, S U Bad), Pre(iz, S; U Bad)).
show that one can construct an abstractiorFofor which Hence,S* = G(0) = (Pre;. Bad), Pre(,, Bad), and S? =
Algorithm 1 always terminates and such that the fixed poif(S?) = (Pre€. Pre(i. Bad). Pre@. Prei. Bad)). Con-
gives the mode-dependent capture setsFofIn order to SiderS® On the one hand, we have that RrePre(p. Bad)
proceed, we introduce the notion of kernel setsHor Pre(j, Bad) by properties (iv) and (i) of Proposition 5.
On the other hand, we have that RyePre(p, Bad) 2
Definition 20. (Kernel set) Thekernel setcorresponding to Pre@j., Bad) by property (iii) of Proposition 5. Hence, we
a modeq” € Q is defined asker(q’) = {4 € Q| q € must have thaS? = Preg;, Bad). Similar reasonings lead
Reach@") andd" € Reachg)}. to S3 = Pre@, Bad. This leads t0S® = G(S?) =
The kernel set for a modg® is thus the set of all modes (Pre€is, Pre€i, Bad), Pre(, Pre(ii, Bad)), which, employ-
that can be reached fromg* “and from whichq® can be N9 again the prqpertles of t_he Prg operator, Iead§3to:2
reached. One can verify that for all pairs of modpsy| e (Pre€ Bad. Pre€i, Bad). This set is, in tum, equal (&
3, we have that"e Réach(]]) anddj e Réach(]f) if and only and therefore Algorithm 1 terminates in three steps.
if ker(G;) = ker(qd;). The next result shows that any two modes
of H in the same kernel set have the same mode-depend&ntProving termination through abstraction
capture set and hence the same set of safe feedback maps. when not all kernel sets have a maximal element, Theorem
- A 3 does not hold. However, for any estimatér one can con-
z\tgpﬁsgg%’%(,)'eFfér’e::veeryhla(s;ntehla%?:k(éi (agnsnhde:]?:re ?Egt struct an abstraction dfl, denotedﬁa, for which Algorithm
TI(G, %) = T1({, ). 1 terminates and such that the fixed point gives the mode-
R dependent capture sets Hf This abstraction is constructed
Proof: Since q,§ € ker, we have thaty” € Reach@) by merging all the modes df that belong to the same kernel
and thatq'e Reach(’). By Proposition 6, the first inclusion set in a unique new mode as follows.

implies thatCq < Cq, while the second inclusion implies that . . : . A A ~ p
2 2 N 2 : efinition 21. Given hybrid systenH = (Q,X,U,D,Y,R f),
Cq < Cq. Hence, we must have thl, = Cq. By equation " o ctiondia = )(/Qa X)L/J D,Y? FAéQan) is a hybr)id

(3), this in turn implies also thdi(g, X) = T1(§, X). ) .
Let K := (Ker@y), ..., ker@y)). Let there bep distinct system with uncontrolled mode transitions such that

elements ink denotedker,. ..., ker,. Note thatker N ker; = ) Q= {‘E}Z%} Y# such thate € Y* and R, ¢) = 6°
0, fori # j. If each of the kernel sets is just one elemen@in for all g* € Q% _ ) .
it means that there are no discrete transitions possitfietimt (i) for all i,j € {1,.., p} there isy* € Y* such thatq? =

bring a discrete statg back to itself. That is, there is no loop (@Y%) if and only if there areq”e ker;, § < ker;, and
in any of the trajectories od.In this case, one can verify that Y € Y such thaty”= R(G,y);

Algorithm 1 terminates in a finite number of steps. If insteddi) for all i € {1,...p}, xe X, d € D, andv € U, we have
there are kernel sets composed of more than one element, it that f8(x, % v, d) := Ugekes f(X @, V. d).

means that there are discrete transitions that bring aedescr
state back to itself, that is, there are loops in the trajeesoof % € X and @ &7, and signalsy?, d, we denote the
§. In this situation, Algorithm 1 may not terminate. The neX{qs of the closed loop systeri®" by ot 62, y?) and
result shows that even when there are loops in the trajestor&;f:(t, (@, %), d, y3), in which () 1= ¢%(t, (62, %), d, y?) sat-
of §, Algorithm 1 still terminates if each kernel set containg}ies $‘<§(t) e A, e (t. OB, ya),ﬁ.a():pqa(t’ 53’ v3), %), d(1)).

a maximal element. We also denote bf:g_a for i € {1, ..., p} the mode-dependent

For a feedback map®™: OQ® x X — U, initial states



capture sets of2. For any® € @7, we defineker(g®) := suchea(t) is such that there arg anddo € ker(g?) such that
ker provided ¢ = @3 Also, for all & € QF we de- of(t) = ¢q(t, Go, y) for all t, that is, it is a discrete flow of system
note the set of reachable modes frafh &s Reach(G?) ;= H. Hence, for allr’ : Qx X — U with #'(§, x) = 7'(§, X) for
Utzo Uy daa(t, 6%, ¥7). In the sequel, we denoiéa(qa, Y?) = aIAI/ 8,4 € ker; for all j, there arey, d, G, € ker;, such that
Uyeeva RE(62, ¥?), in which we sefR¥(§?,y?) := 62 if R, y?) % (t. (Go. o), Y. d) € Bad By Proposition 10, this implies that

is not defined for somg® € Y2 The following proposition for all 7 : Q x X — U there arey, d, g, € ker, such that

is a direct consequence of Theorem 3 and of the fact that @J(t, (Go. Xo). Y. d) € Bad Hence,x, € Cq,. ]
kernel sets o2 are singletons. The above theorem provides a useful result for the compu-
tation of the mode-dependent capture set#lofn particular,
one constructs the abstractiét? and applies Algorithm 1 to

The next result shows that any piece-wise continuous sig- Algorithm 1 is in turn always guaranteed to terminate for

nal, which is continuous from the right and contained isystemH?2. The result (by Theorem 4) provides the s
ker(pe(t, 63, y?)) is a possible discrete flow dfi for suitable Hence,H? can be considered only as a structural abstraction
y starting from somey, € ker(g?). as it does not provide an over-approximation of the capture

Proposition 12. For any piece-wise continuous signal set ofH, but provides '_t exactly. . ) .
that is continuous from the right and such tha(t) The next two technical propositions provide a characteri-

ker(de(t, 62 y2), there are, € ker@) and y such that Zation of the Pre operator computed for systéth and the
a() i ¢q’(t0(’ﬁo y)’for all t. ° relationship betweeR? andR. Specifically, denote the prede-

_ . cessor operator for systehi? by Pré(g@, S) for someS ¢ X
Proof: Sincea(t) € ker(ge(t, 65, y7)) for all t, there are a5 Pra(g?, S) := {x, € X |V 72 3 t,d, S.LR(t (6, %), d. €) €

timesty, ...ty <t and a sequencg, ..., jn € {1, ..., p} such S).

that a(t) € ker;; for all t € [tj,ti.1). Since any mode irker;, N . .

can transit to any other mode ker; instantaneously under Proposition 13. For all §* € Q* and Sc X, we have that

the discrete transitions &1, we have that there ap;"c ker;  Pre*(G* S) = Pre(\/ ker(f). S).

andy; such thai(t) = ¢g(t—ti, o, yi) for all t € [t;, ti,1). Also, Proof: From the definition of PRd?,S), we have

for any two modesy; € ker; a?dan_l € ker;,,, we haAve that o+ X, € Pré(@,s) if and only if for all 72 there

aivy € Reachgi). Hence, letoj = limey, dq(t —t.8ois¥i) are t,d such that x(t) = o7 (t (3% %).de) € S,

anda; = I|mHti++1 ¢q(t—tit1, Oo.i+1, Yi+1)- Then, since multiple in which ia(t) c fa(ka(t) qxa A3(R3(1)), d(t), which,

transitions are possible id at the same time, there is a signaby the definition of f2 and’ (;f f s ’equivalent to

Yiir1 such thata'i+ = ¢q(0, ai‘,yi,m). Hence, there is a signal );ia(t) c f(83(t), UQEker(qa) quq q, 73(R3(1)), d(t)) _

Proposition 11. Algorithm 1 terminates for systef?.

y such thata(t) = ¢4(t, oo, y) for all t. Bt \V ker(6®), 22(58(), d(t). Hence, by the definition
Theorem 4. For all kernel sets kerwith i € {1,..., p} and for of Pre, we have that, € Préi(§?,S) if and only if
all § € ker, we have thaCq = CZ.. Xo € Pre(/ ker(@?), S). [

Proof: Let G € ker. We first show thatCq C Cga. Let Propoition 14. Let Q"}‘l,qa& € Q% If 6 e RA(G2,Y?) then
X, € Cq, then for all7 : Qx X — U, there arey, d, and V ker(@j,) < Reaclf\/ ker(q;,))-
t> 0 such thatge(t, (G, x),dy) € Bad This s in particular — proof: I o e RA(G?. Y%, then by the definition of®
true for all those feedback mapsstich thatr(g, X) = 7(4. )  here areqe kerl(qf?‘) andoq” € ker(6f ) such thatef = R(@, y)
wheneverqg,§ € ker; for somej € {1,..,p}. Hence, we Jo L L
Iso h hat f ]Iha R % X U th d for somey € Y. By the definition of a kernel set, this also
also have that for alr® : Q% x X — U, there arey, d, ., jiaq that for aliqe ker(@®) and d e ker(@?), there is a
andt > 0 such thatx(t) := ¢5(t(G).d.y) € Bad in sequence of eventg arjlod of modegj, qu- € Q such
which % & f(%(9), 9q(t. ). #(a(0), x0), d®) with a(9) := & 2F 05 BT ér'{éq,l-( 01 modegy.. 0 € Q sus
) N . T , Qi . - .
If ¢q(t.G.y) € ker. Such a signalx(l) also satisfiesk € gjhcapq y) € Reaché) for all y e Y andq e O, this in turn
FA(X(0), a (1), i(a(t). X(1)). d(1) by the definition off®. By the ;. jieg thatdfj,, € Reach;) for i € {0, ...,k — 1}. This leads
definition of %, there isy™ such thata(t) = ga(t, 6% y°) for q c Reacfr(l) for all c ker(¢?) and g € ker(g? ). This
all t. Hence,x(t) is also a continuous flow off? starting at also implies thaty"c Reach(/ ker(aé.‘ ) and hence éince this
Ad a -
(&7, o) and therefores € Ca.. ) . holds for alld e ker(@?)) to \/ ker(d ) € Reachly ker(@)).
We now show thatCf c Cq If % € Cf ' ' “m

; . q"
then for all feedback maps®™ : Q* x X — U, _ A A
there arey?, d, and t > O such thatxi) := emma 1. For all g € Q we have thatCq =
’;;Z(t, (G2, %), y?,d) € Bad Here, we have that’(t) sat- Pre(React(q), Bad).
isfies 32(t) € A1), gen(t, G ¥7), 7¥(ger(t, G, Y7), X2), d(1)), Proof: First, we show thatCy < Pre(Reachy), Bad).
which is equivalent (by the definition of?®) to %%() € Since Algorithm 1 terminates in a finite number
F(0), ker(gaa(t, 7. ¥2), 7(dee (8, G, ¥%), X°), d(t)), which is n of steps for H%, we have thatCZ = Pré(q,

equivalent tos@(t) = f (33(1), a(t), (P (t, 62, y¥), %), d(t)) for R o R ~a R
piece-wise continuous signat (continuolus from the right) UQ?IERa(qa’Ya) Pref (qh’Uq?zERa(q?l’Ya) Pré(qiz"“Uq?n,IERa(q?n,z’Ya)
such thata(t) € ker(pg(t, 67, y?)). By Proposition 12, any Prea(qf]?‘nfl, Bad)...))). By Proposition 13, we also have that
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€3, = Pre{VKer(@). gy cror.v Pre( Vier(@,), Uq?zeﬁa(q?l,va)

Pre(\/ker(qu?‘z),...uq? ek vm Pre(ken(@ ), Bad)..
By Proposition 14, we have that\/ker@®) = c
Reach{/ ker(§®)) and that\/ ker(qf]?‘m) C Reachy/ l<er(q ))
for i < n. Since the Pre operator and Reach preserve
the inclusion relation in the first argument, these imply
that CEl C Pre(Reachy{ ker(g®), Bad). Since for all
01,02 € ker(qa) we have that Reactf) = Reach@,), we also g 2 (Left) Example 3, in which the continuous dynamics are
have that Reacql = Reach{/ ker(g)) for all q € ker(§?). given by equations (5). (Right) Example 3, in which the comtius
Hence, C2, C Pre(Reach(), Bad) for all g € ker(G®). This dynamics are given by equations (6). The set @r&ad) is in red
along Wlt(h Theorem 4 finally imply that for aj € ker(G?) while the set Pref,, Bad) is in blue. Both sets extend tec.
we haveCq C Pre(Reactt), Bad).

To show thaf:q 2 Pre(Reachd), Bad), we employ the prop-
erties of the Pre operator and Proposition 6. By such a propo- arguments; there ig > 0 such thatf;(x2 u) > ¢; B2 =

sition, by the fact that (smclel is an estimator foH) for all B2 R™L,

d € Qthereisy € Y such thaR(q,y) = Reachg), and by prop- Then, Préd, Bad) = Pre(d, Bady, N
erty (iii) of Proposmon 5, it follows thva 2 Pre@, CReachqy) Pre(d, Bad)y, in  which Prdg, Bad), = {Xo c
In turn we have thaCReachqya Pre(Reachd), Bad) by Propo- x | 3t d st some st (6, %), d, u, €) c
sition 6 and property (iii) of Proposition 5. Hence, we havgad) and Pred, Bad)y = (%o c
thatCq 2 Pre@, Pre(Reachﬁ Bad)), which by property (i) of x | 3 t, d st some #3(t, (X0, 6),d, uq, €) € Bady. A
Proposition 6 leads tﬁ:q 2 Pre(Reachd), Bad). B feedback mag(@, x) € I1(4, X) is given by

This result shows that the mode-dependent captur€get
can be computed by computing the Pre operator only once as
opposed to being determined through a (finite, by Theorem(g, x) :=
4 and Proposition 11) iteration of Pre operator computation
Exact computation of Pre for general dynamics is not always
possible. However, there are a number of works that have )
focused on the exact computation of uncontrollable prestece By virtue of this result, one can avoid computing the set
sor operators for restricted classes of systems. For exampire(d, Bad), which requires optimization over the space of
the work of [46] shows that Pre can be exactly computembntrol inputs. One can instead compute the setsgPBa(),
for special classes of linear systems; [47] further extehi#s and Preg, Bad)y, which, since the control input is fixed
result to linear hybrid systems; [48] shows that Pre is dyxactand the flow preserves the ordering, can be computed by
computable also for triangular hybrid systems. Finally7,[1 linear complexity algorithms. The structure of the $#d
28] show that Pre is computable with a linear complexityell models collision configurations between agents slgarin
algorithm for classes of order preserving systems. Based @@ommon space as illustrated in the application examples of
these results and on Lemma 1, we conclude that Problem ZSisction VIII. We omit the details of the algorithms, whicimca
decidablewhen for each modg € Q the continuous dynamics be found elsewhere [17, 28] and instead present in Sectitin VI
x € f(x,q,u,d), d € D belong to one of the above cited classetheir application to a concrete example.
of systems. Since the application example falls in the abdiss
systems described in [17,28], we summarize the main result VII. EQuIvALENCE BETWEEN ProBLEM 1 AND PrOBLEM 2

here. For this sake, we restrict the structurdHofind Bad to Showing that Problem 1 is equivalent to Problem 2 is based

u. if xe Pre(§, Bady A x € dPre(q, Bad),
uy if x e Pre(§, Bad). A x € 9Pre(g, Bad)y
u. if x e dPre@, Bad), A dPre(@, Bad),

% otherwise

that of a two-agent game. on showing that for allqe Q we have thatC; = Cg. |
Definition 22. The pair {,Bad) has the form of a two- general, the set of possible continuous trajectories dieeys
agent game providedH = H! | H2Z with H = H for every modeg C Q contains but is not equal to the set of
(Q, X, Ui, DI, R, ) for i € {1,2} with Q! = 0, D! = ¢, continuous trajectories possible k. This is due to the fact
1 =0, U2 =0, andBad= B! x B? with B C X. that inH not all transitions may be possible among the modes

in g due to the structure dR. This information was lost in
Proposition 15. Let (H, Bad) be in the form of a two-agent ihe construction ofi in order to obtain a hybrid system with
game. Assume that uncontrolled mode transitions aahowndiscretgcontinuous
(i) U' = [u,,uy] € R; the flow of H denotedg(t,-,-) : state. In order to illustrate this point, consider the fafiog
X x S(U) — X is an order preserving function in bothexample.

ar uments there ig > 0 such that f(x},u) > ¢; B! = _ :
Blgx RM-1 ¥ foduy=¢ Example3. Consider systenH with two modesq; and g

(il For ge Q there ared,.d, € R and a functionf : R" x between which there is no trensition an(ztl let the continuous
R — R" such that{f2(2,g,d) | d € D?) = f(x2 0) | 0 c dynamics for each mode be given, foe R4, by
[6L,6u]); the flow of X2 = f(x2,6), that is, ¢?(t,-,-) : (2 B . (1 B
X x S([6L, 6u]) — X, is an order preserving map in both  * = | 1 )% forg=quandx={ ; Ju, forg=a (5)
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in whichu € [0, 1] andq, = {q1,02}. Let Bad=[1,2]x[1,2]. proposition provide conditions for when this is the case.
In order to determin€g,, refer to the left plot of Figure 2, in
which we depict the sets Pog(Bad) and Preg,, Bad). Any
point X, ¢ Pre@, Bad) U Pre, Bad) admits a control that " )
keepsx, outsideBad for every initial mode. This is due to the () there is a set of model;, < Q such thatf(x, g, u, D) <
fact that the mode dfi does not switch and hence a continuous, | (%@ U. D) for all g € Iq and for all & u) € X > U;
trajectory starting ak, will follow either of the two directions () forall (x,u) € XxU there isd € D such thatf (x, g, u, d) ¢
depicted, none of which takes the flow insiBad. Hence, we f(x.g.u.D) for all q ¢ Ig,.

have thatCg, = Pre@, Bad) U Pre@,, Bad). By contrast, we The setly, is called theindistinguishable setor g.

have thaCq, = Pre(, Bad), which includes poink, in Figure  note that in the case in which the indistinguishable set for
2 as this can be taken ®ad by, for example, first flowing o s ¢ itself, the modeg is distinguishable from any other
underg, and then unded,. Hence, in this case we have thalygge, that is, for all X, u) there isd such thatf (x, g, u,d) ¢

Cq, is strictly larger tharCq,. f(x, gj, u, D) for all g; # ¢;. Weak distinguishability allows for

If we instead had that Pr,Bad) = Pre€u,Bad U ¢ 1o generate the same vector fields as those generated by the
Pre@z, Bad), we would also have thafg, = Cg,. In order to  odes in the selt .

illustrate how we can obtain this equality, we modify system
(5) to Assumption 2. SystemH is such that all modes i@ are

weakly distinguishable.

. 2 1 - -

X = ( 1 )U+( 1 )d, de[0,1]. whenq =q; Proposition 16. Let g € 0o, and Xt) = ¢y(t, (0, Xo), U, d, €).
1 1 Then, Assumption 2 implies that there i$0d such that

( 5 )u +( 1 )d, de[0,1], wheng=q.. (6) q(n(t)) = ReacliReacliq,) N Ig) for all t > 0.

: Proof: Assumption 2 implies that for alx(0), u(0)), there
In this case, the sets Pgg(Bad) and Preq,, Bad) are larger is ad(0) such that (x(0), g, u(0), d(0)) = £(x(0), g, u(0). d(0))

than before and are depicted in the right side plot of Fig- S '
ure 2. One can check that in this case we still have tr?l%?{viﬁtr?;dge D implies thatg; I Hence,q((t)) can be

Cq, = Pre@u, Bad) U Pre(p, Bad) and thatCq, = Preo, Bad).

Definition 23. A modeq; € Q is calledweakly distinguishable
¢ provided

X

But, as opposed to before, we also have thatqRr&ad) = q€ QI3 0o € Go, o St. 9= gg(t, Go, 0),
Pre(y., Bad) UPre(),, Bad) so that the two capture sets are the(s(t)) = #q(0, 0o, 0) € I, andI d st.
same, that isCg, = Cg,. X(r) = f(X(1), g7, Qo o), U(7), d(7)) for all T < t

This example illustrates an instance of a systemhis, in turn, implies that(;(t)) € Reach(Reackg) N 14) for
in which Cg # Cg due to Pref,Bad not being allt> 0.
equal to gegPre@i.Bad). It also illustrates how re- Let g° € Reach(Reackg) n Ig). Then, for allt > 0
quiring that Preg,Bad) < gegPrel,Bad (note that there arec and g, € §o such thatq* = ¢q(t,do, ) and
Ugqeq Prei, Bad) 2 PreQTBad)A derives from the definition of ¢,(z,q0,0) € Reach@o) N I4 for all = < t. This, in turn,
Pre) is stiicient to haveCg = Cg. We thus pose the following implies that ¢4(0,00,07) € lg. Since for alld we have
assumption. that X(r) = f(x(1),q,u(r),d(r)) € f(x(r),q,u(r),D) for all
g € lg, there must be a disturbance sigrdil such that
X(r) = f(X(7), pq(t, Go, o), U(7), d*(7)) for all = < t. Hence,
we also have thag* € q(5(t)) for all t > 0. [ ]

Assumption 1. For all ¢ € Q we have that Pre(Bad) C
UgqeqPre@i, Bad).

This assumption requires that if an initial statgis taken
to Bad by an arbitrary sequence of modesdgnthen there is
a disturbance signal for which it is also takenBad by at
least one modej € g. We provide at the end of this section Proof: Let X, ¢ Cg, then there is a feedback mapsuch
classes of systems for which this assumption is satisfied. that for allq € g, o, d, it guarantees that’(t, (g, Xo), d, o) ¢

Since by Lemma 1, Prg(Bad < éq for all g € q Badfor all t > 0. This holds in particular fog =g, o = €
in order to obtain equivalence, we should at least have tratdd such thatd(0) leads toq(n(t)) = Reach(Reackj N Ig)
Pre@;, Bad) is also a subset ofg, which is not the case in for all t > 0, which exists by Proposition 16. In this case,
general. In fact, an elemenr is in Prefy, Bad) if and only if ~ 7(q(n(t)), X) = 7(Reach(Reaclj N 1), X) =: 7/(x) is a simple
there is no feedback mag(x) that prevents the flow startingfeedback fromx for all t > 0. Sincex(0") = x(0) = X,, we
from this element to end-up iBad. Nevertheless, for such anthus have that’ is also such thap? (t, (;, %), d, €) ¢ Bad for
elementx, there could still be a feedback mayfq(n(t)), x) all d. Hence,x, ¢ Pre(;, Bad). [ ]
that prevents the flow originating from it to ent8ad. Hence,
Xo may not be inCg. However, if X(t) = ¢x(t, (Xo, i), U, d, €)
implies thatq(n(t)) is equal to a constant for all> 0, then
the mapr(q(n(t)), X) that prevents the flow from enterirgad Proof: Proposition 4 proves th&lg C éq. We next prove
becomes a simple feedback m&ifx). In this case, ifx, is in  the reverse inclusion. Specifically, by Lemma 1 and Assump-
Pre@;, Bad), it must also be irCq. The next assumption andtion 1 we have thaéq C UgereacngyPre@, Bad), in which

Lemma 2. Let Assumption 2 hold. Then, we have that
Pre(q;, Bad) C Cq for all g; € 4.

Theorem 5. Under Assumptions 1 and 2, Problem 1 and
Problem 2 are equivalent.
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by Lemma 2 we have that PgBad) C Creachg;, in Which  such thatc e [LX, UX]. Hence, there ik € {1, ..., N} such that
Creachgy = Cq by Proposition 2. This proves equivalencell X - X, = fOT x(t)dt for x(t) € [LX,N¥] for all t < T. [ ]
This proposition states that any point that can be reached
A. Systems that satisfy Assumption 1 and Assumption 2 under a rectangular fierential inclus_ion_ in the form of a
union of “smaller” rectangular étierential inclusions can also

Assumption 1 can be flicult to check for general hybrid o 1o4ched under at least one of these smaller rectangular
systems. We thus provide two classes of systems for whigf}arential inclusions

such an assumption is satisfied and illustrate in the netibsec N _
how one of these classes well models the application exampfeoposition 19. Let (H,Bad) be in the form of a two-
We first introduce two intermediate results. agent game. Assumption 1 is satisfied if for @l Q with

qg=1{0y,..., either one of the two following properties are
Proposition 17. Let x € R", § € ® < RP with (@,<) gatis{gtlad ng}}q. g prop
a lattice, and consider the system = f(x,6), in which ' _ K 11k

(i) for all gqx € q there are K,U¥X € R" such that

e . f2(%%,qr.d) | d € D? = [LK UK, there are LU
(i) the flow of the systenp(t, Xo,0) : S(®) — R" is a ]{R” (;(ucqr: tr)1a|t{f2(€x2 a}d) |[d c ]Dz} - L U]L aned
continuous and order preserving map for alf x R" EEE U[LN,U,N],Z [LUl: Y

and te R,; (i) for all gx € g there aredk, 6 € © with (©, <) a lattice and

. K ok kil kel 1 K

(if) ;‘,’f:g}(\/ef thalilii’eUl] n [ﬁllf ’19U+ 1#0 6 <6 and a functionf : R" x ® — R" such that{f?(x?, g, d) | d €
v =0 forallke{l,...N-1. _ D2} = {f(x%.6) | 6 € [65.65]} and {f2(2.G.d) | d e

Then, for all %, T >0, i € {1,...,n}, and x; such that there is D2} = {f(x2,0) | 0 € Ueps N[Ok, 61}, X = f(x,6) with

0 with 6(t) € Uken_ 6, 65] for t < T and withei(T, %, 6) = 0 € U n[0F, 65] satisfies (i) and (i) of Proposition
X, there are ke {1,...,N} and @ with &' (t) € [6K,68] fort < T 17 and B = B2 x R"
/ < ) 1 .
such thatg;(T, %o, ¢') = X. _
- o Proof: Let (x3,X5) € Pre@], Bad), we show that when
Proof: Let X = ¢i(T, X, 6) for 6(t) € Uker.mI[6(,00] either (i) or (i) is satisfied there iy € @ such that
for t < T. By property (i) and property (i), we have thal(xl x2) e Preg, Bad). We consider first case (i). Then, for
[61(T. %o, 01), 4i(T. X0, 6)1 N [1(T, X0, 67), 4i(T. X0, 65 ) # 0 4l feedback maps there is &T > 0 such thaw?, (T, x}) e B!
for all 1 € (LN = 1. Hence it ol onqe, (Tt = x(T) € B2 for 2(t) e [L. U] for all t < T

_ Ky K _
lows - that  Uker, nil9i(T. X0, 60), ¢i(T. %o, 0] L Letx := xXT), then by Proposition 18 there Ise {1, ..., N}

[6i(T. %, 6}). 6i(T. %0, 0))].  Since % € [¢i(T, %.6}), T o
#i(T, %o OL’j‘L)], this impILiJes that there i& € {1, ..., N} such that Such thabg + fq Xz(t)dt = X € B with X(t) € [LX,U"] for
X € [$i(T. %o, 0), 61(T. %, 6K)]. Since is a continuous map ¢ < T- Hence, & X0) € Prei. Bad).
from the space of input signals i, it maps the connected set COnsider now case (ii). We have that for all fekedlk(Jack maps
S([6k. 65]) for all k to the connected sek (T, x,, S(¢f, 6k]). 7 there areT > 0 and & with 6() € Ui, w07, 6] for
. . < (T, 2( 1, X5, .
Since all connected sets iR are intervals, we have that@l t < T such that¢f,(T,x’) € B" and ¢2(T.x".6) € By
ST %0 SO 6K]) = [1(T. %005, 61(T. %0, 65)]. Hence, Let X; 1= ¢2(T,x%,6), then by Proposition 17 there are also
X € ¢i(T, %o, S([6K, 6K 1)), which implies that there ig’ with k€ {1,...,N} andé’ with ¢'(t) € [6}, 6] for all t < T such that
0/ (t) € [6%,6K] for t < T such thati(T, X, 6) = X. m X = ¢e(T, %, ¢). Hence, &', x°) € Pre@, Bad). u
This proposition states that for a system defined on partialThis proposition states that ifH¢ Bad) is in the form of
orders whose flow preserves the order and whose set of inptévo-agent game and the continuous dynamicsiéf(the
is a connected union of intervals, any point reachable byuacontrolled agent) have either the order preserving ptigse
coordinate of the flow through an arbitrary input signal ca@stablished by the assumptions of Proposition 17 or can be
also be reached by an input signal that takes values in dghedeled by a family of dferential inclusions according to
only of the possible intervals. Proposition 18, then Assumption 1 is satisfied. In turn, the
assumptions of Propositions 17 and 18 are simple to check.
Note that modeling the uncontrolled agent by a family of
switching diferential inclusions is often a practical approach
DT NN i when an accurate dynamical model of such an agent is
[L%UTuU. . U[L U ]rzl [L,U]._Then, fgr all %, x € R" and missing. In this case, rectangularffdrential inclusions can
T>0 suchTthat ¥+ Jo X(Odt=X, there is ke {1....N} such pe fectively employed to approximate the agent dynamics
that >q)+f0 x(t)dt = X with x(t) € [LX, UX] for t < T. for safety control purposes. Similarly, systems whose dy-
_ T ) namics have order preserving properties are found in severa
Proof: Let X = X, + [, X(t)dt for X(t) € [L.N] for all  anpjication domains, including biological networks [2,8]d
t<T. Re-writing this equal|tchomponent-W|se, we have tha{etworks of agents evolving on pre-specified paths such as
for all i € {1,...n} % = xi = [; X(t)dt for X(t) € [Li, Uil for  trains on rails [32,41], aircrafts on their routes [33, 42hd
allt <T. Then, there ig; € [Lj, Uj] such thatfoT xi(t)dt =T vehicles in their lanes [22, 24].
and hence such thag¢ — xg = ¢;T. The constant vectot := Assumption 2 requires that for all values (), the possible
(c1,...,Cn)" Is thus such thak — x, = cT, in whichc e [L,U]. vector fields generated by any given moglecannot be all
Since L,U] = [LL, U u..U[LN,UN], there isk € {1,...,N} generated by modes that do not belong to the indistinguishab

Proposition 18. Let x Lk, UX € R" for k € {1,..,N} and
consider a dfferential inclusion of the fornx e [LY, U] U
.. U[LN,UN]. Assume that there are,U e R" such that
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set for . In the case in whichf(x, g;,u,d) is affine in the time, or also ina and therc for some time. It is easy to verify
disturbanced, that is, f(x, g, u,d) = h(x, g, u) + g(x, u)d, in that this implies thaB(t) € [-|8s| — d, Ba + d], that is,3(t) can
which h(x, g, u) can be regarded as the “nominal” dynamicde anywhere. o
a suficient condition for weak distinguishability of modes Hence, we have that #(t) € [—|8,|—d, —d] then necessarily
given, for example, when the nominal dynamics of magle q(t) = b. Similarly, if 3(t) € [-d, 0] then,a is not currently
are not possible dynamics in any other mode. This can, in tupossible and thus we must have thgt) € {c,b}. As a
be ensured ifih(x, g, u) — h(x, g;, u)ll > suppllg(x, u)dll. As consequence, we l&f = {ye, Yo, €} and define fort > T
an example, considefr in the form of a chain of integrators, y(t) = yep, if A(t) € [-d, 0], y(t) = Yo if B(t) € [~|Bol — d, —d],
that is, f(X, Gj, U, d) = (X, ..., X, Bi + U+d). Lettingd € [-d,d] andy(t) = € otherwise. ThusR is such thatR(ds, Yer) = G2,
for somed > 0, one can verify that any modg is weakly R(&1. o) = 63, and R(é. yb) = . SystemH is represented
distinguishable ifj3; — B;| > d for all j # i. For the special in the top left diagram of Figure 3. The properties of an
case in whichf is linear, one can obtain the following generaéstimator are satisfied as whanor {a,c} are ruled out, the
sufficient condition for weak distinguishability. structure of R guarantees thafj(t) cannot take again those
values. By Theorem 3, Algorithm 1 terminates and by Lemma
1 we have thaCy, = Pre(f:, Bad), Cy, = Pre(f, Bad), and
weakly distinguishable if ColSpavi;} N ColSpantA —A; | Bi— g‘% N P_r_qu, Bad). Sm.C?. fgr allq e QI the aﬁsumpnon;_of
B M =0forallj#i roposition 15 are satis ied, we employ such a proposition to
T determine whethex € Pre(j, Bad) for all i € {1,2,3} and to
Proof: If ColSpariM;}nColSpanAi—-A; | Bi—B; | M;} = 0 determine the feedback map Assumption 1 is satisfied and
for all j # i, then for all d,d*,u,x with Mjd # O we Assumption 2 is also satisfied fot € (Vmin, Vmay). Simulation
have thatMid # (A — Aj)x + (Bi — Bj)u + M;d*, which is results are shown in panels (a)-(e) of Figure 3.
equivalent to havingvid + Aix + Biu # M;d* + Ajx + Bju.
This, in turn, is equivalent to having that there dssuch
that f(x, qi, u, d) # f(x, qj,u,d*) for all x,u,d*, which implies
weak distinguishability. ] In this paper, we have addressed the safety control problem
Finally, consider the class of systems introduced in Propt®r hybrid systems in which the mode is not available for
sition 15, in which for allg'= gk € Q we haved € [¢%,6]. If ~ control (HMHS). We have adopted an approach inspired by
for everyk we have thatéﬂf,e'fj] ¢ Uj¢k[9j,931] and the map the theory of games with |mperfect mformatlon_. _Sp_ecn‘_yz;all
f2: X x® — X is strongly order preserving with respect toVe have introduced the notion of non-deterministic discret

the second argument, then Assumption 2 is satisfied. Sigilainformation state and formulated the control problem on its
consider case (i) of Proposition 19. If for &luch thag, € Q  Pasis (Problem 1). We have introduced the notion of an esti-
we have that [X,UX] ¢ U [LI, U], then Assumption 2 is Mator and we have formulated a control problem with perfect

satisfied. state information on a new hybrid automatdn(Problem 2).
We have provided an algorithm for the computation of the
capture set foH and for the least restrictive control map. We
have provided conditions for the termination of the itemti
Consider the application example described in Section IVddgorithm that computes the capture set. We have also shown
and depicted in Figure 1. Here, we construct an estimathow to construct an abstraction bff for which the algorithm
calculate the mode-dependent capture sets, and deternalveays terminates and has as fixed point the capture set of
the feedback map. An estimatét = (Q,X,U,D,Y,R f) is H. We showed that Problem 2 is equivalent to Problem 1
uniquely determined by, R, andY. We setQ = {1, 82,63}, under suitable assumptions and provided classes of systems
in which §1 = {a, b, c}, G2 = {c, b}, andd; = {b}. To determine for which these assumptions are satisfied. Accordingly, an
R and Y, consider the estimatg(t) = %ftiT Vo(r)dr, t > T. application example in the context of cooperative actifetga
For each possible value a@j(t), we compute the interval in systems has been presented. Future research will include
which (t) must lie. Thus, we have to consider three casesmoving Assumptions 1 and 2 by employing a dynamic
@ a®) =a (2)qt) =c; () q(t) =hb. feedback design that does not impose separation between
Case (1):q(t) = a. Then, in the interval of timet[- T,t], estimation and control. Also, we will consider the case in
the modeq(t) can only have been equal # Since it is still which there is a non-zero minimum dwell time associated with
possible thati;(t) = 0 whenvpyay is exceeded, we have thatthe modes imQ.
Va(7) = Ba + d(r) with |d(7)| < Ba for T € [t — T, t]. This, in
turn, leads to havingB(t) — Bal < Ba.
Case (2):q(t) = c. Then, in the interval of timet[- T, 1],
the modeq(t) can bec for all time or be first equal t@ and  [1] U.S. DOT Joint Program fiice ITS. http/www.its.dot.gov.
then be equal ta. In this case, we have thag(r) = & +d(r) (2 D Angel and ., Somtag.  mercomnectons of monatmsterns
for sometj(r) such thatd(r)| < ’% +d. As a consequence, we nonsmooth analysis. Lecture Notes in Control and Inform. Saringer

Proposition 20. Let f(x, q;,u,d) = Aix + Bju+ M;d with ue
U CR™and de D c RP for all g € Q . Then, modeqgs

IX. CONCLUSIONS

VIII. A ppLicatioN ExampLE: CoNTROL DESIGN
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(Proof of Proposition % Property (i) follows directly
from the definition of Pre, in whicht 0. To show
property (ii), let x, € Pre(, Pre@,S)). By the definition
of Pre, we have that for alk there isd; and a timet;
such that some¢”(t1, (%,0),d1, €) € Pre@S). Define
Xp o= ¢”(t1, (%o, 9), dl, €). Sincex; € Pre(, S), we have by the
definition of Pre that for alk there isd, andt, > 0 such that
someg’(t, (X, G), dz, €) € S. Lett =ty + t, and defined such
thatd(r) = di(r) for r < t; andd(r) = do(r — t1) for = > t;.
Then, we have that;&”(tz, (X, G),d2,€) = ¢”(t (%0, §), d, €).
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Kybrid Systems: Computation and Pre(p, SoU S1 U ...

02 2 @1 entersS. Property (v) follows from the fact that (a)
Pre@, Pre(, S)) 2 Pre@i, S) by property (i) and (iii); and
from the fact that (b) Preg; Pre@py, S)) € Pre@, Pre@, S))
by properties (iv) and (iii); and from the fact that (c)
Pre@, Pre(, S)) Pre@i,S) by property (ii). Finally,
we show property (vi). By property (i), we have that
.US;, C Pre, S1) U... U Pre@, Sn). Thus, applying

property (iii), we have that Prg{;So U S; U ... US,) C
Pre@o.So U Pre(,S1) U U Pre@n Sn)). Also,
applying property (iv) and property (iii), we have

that Prefp,So U Pre(o,S1) U U Prep,Sn) 2
Pre@o,So U Pre@,S1) U U Pre@n, Sn)). However,
Preo.So U Pre@p,S1) U U Preo, Sn)
Preo.So U S; U ... U Sy) by the definition of Pre
(using the same strategy as used for proving property
(ii)). Hence Prefo, Sp U Pre(, S1) U ... U Pre@h, Sn))

U Sp) for € §o for all i.

(Proof of Proposition $ See Proposition 4 of [51].

(Proof of Proposition ¥ Let (G, x) € W. Then, by the
definition of C we have that there is a feedback nmapsich
that allqb”' (t, (G, %), d,y) € W for all d ,y andt > 0. Define the

setW = Udyt>0¢ (t, (&, %), d,y) € W, which is controlled
invariant with feedback map;.”Since the class of controlled
invariant sets contained i is closed under union (see the
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proof of Proposition 3 of [39]), there is a feedback mahat have thatz(t) € E for all t as z can change its value only
makes the unlorUM(q x)emy Wi € c W controlled invariant. throughR, which always mapg back inE. Therefore, there
ThereforeW is also controlled invariant. It is the maximalmust be a time such thatx(t) ¢ S for systemH Since thex
controlled invariant set contained inQ(x X)/(Q x Bad) trajectories ofH starting at &, 2) € S are the same as those
because if ¢'x) ¢ W then ( x) € C, which implies that for of x € F(x) starting atx, € S, it must be thatx(t) ¢ S also
all maps= some flow ¢ (t, (§, X),d,y) entersQ x Bad for for systemx'e F(x), implying thatS cannot be invariant foF .
somed, y, andt > 0.

Definition 24. (Type of a kernel set) We say that a kernel set
ker, ¢ Q transitsto a kernel seker, ¢ Q if there isdj € ker,

. ) o € ken, andy € Y such thatg = R(G1,Y). A kernel set is
(Proof of Proposition 3 We construct fromF an impulse typg1) if it does not transit to any other kernel set. A kernel

differential inclusion whosex trajectories are the same At e .
et istypgn) if it transits totypgn — 1) kernel sets and onl
the ones of the system € F(X) and then apply Theoremto typg(lﬁe_( 1)) type(1) ker)rlwzf(sets) y

3 from [5] to the resulting impulse fierential inclusion to
conclude invariance o8. An impulse dfferential inclusion is Proposition 21. Let§ for i € {1,..., M} be in a typ€l) kernel
a tupleH = (X,F,R,J), in which X is a finite dimensional set. Then, Algorithm 1 is such that there is aXo for which
space,F : X — 2% is a set valued map regarded as §K —SK L
differential | inclusionx e F(>_() R: X - 2Xis a reset map, (Proof) See Theorem 2 of [51].
and J c X is a forced discrete transition set. SinEeis
piecewise Lipschitz continuous oX, there are set¥; c X
fori = 1,...,N that coverX on whichF is Lipschitz. Define
for eachi e {1,..,N} the mapsF; : X — 2X such that
Fi(X) = F(x) for all x € X; and forx ¢ X; the mapF;(x)
is extended so that it is Lipschitz continuous &n Then,
Fi : X —> 2% is Marchaud and Lipschitz continuous. Let This work was supported by NSF CAREER Award Number
z € (1,0 for i € {1,..,N} and defineX := X x {1,0)N. CNS-0642719.
Let z = (z,....,zy) and define the new map : X — 2X
zF1(3) +ON IZNFN(X) Y(x,2) € X. Define

X
a reset maR : X - X by R(x,2) = (x,&), if x € X;. Define
the set of forced transitiond ¢ X asJ = {(x,2 e_X | X €
Xi andz # g}. By construction, the trajectories ofH starting
from initial conditionsz = g andx € X; for all i coincide with
the trajectories ok € F(X) startlng with the same € X;.

Let E := {ey,...,en} c {1, 01N and define the sed c X as
S=5 x E. This is a closed set. Theorem 3 from [5] state
that if F is Marchaud and Lipschitz and is closed, then
S is invariant undeH if and only if (1) R(S) ¢ S and (2)
Y(X,2) € S\J we haveF(x,2) C T3(X, 2). Notice thatR(S) c S
by the WayR is constructed. Let thefr(x) € Ts(x) for all
x € S. We show that this implies that alge(x,z) € Ts(x,2)
forall (x,2) € S\J . By the wayF, S, andJ have been defined,
for all (x,2) € S\J we have thatF(x,2) = (Fi(X), Onxt) With
X € X. Since alsox € S, we haveF;(x) € Ts(X) because
x € X; and Fi(x) = F(X) for x € X;. Sincez € E, we have
that Te(2) = Onx1- As a consequencé,(x,2) € Ts(X) X Te(2).
Given thatTsxe(x,2 = Ts(X) x Te(2) [10], it follows that
F(x,2) € Tsxe(x,2) for all (x,2) € S\J. By Theorem 3 in
[5], setS is invariant undeH, which implies that se€ is formatics at the University of Michigan, Ann Arbor.
invariant byF as thex trajectories of the first system starting. =~ In 2010, she joined the Department of Mechanical
i (x,.2) € S are the same as thetrajectories of the second & 2 he Laboreor for fermation snc Decisystems (LI0%
system starting ax, € S.

the W. M. Keck Career Development Assistant Professor innidical
Conversely, ifF(X) ¢ Ts(X) for somex € S, then for some

(Proof of Proposition 8 See Proposition 5 of [51].

(Proof of Theorem BSee Theorem 2 of [51].
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