ntelligent transportation systems (ITS) for in-vehicle
cooperative active safety continue to be examined
worldwide by government and industry consortia. The
role of these systems in everyday driving
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[1], and the Advanced Safety Vehicle Project 3 (ASV3) in
Japan (The CAMP Vehicle Safety Consortium formed
between Toyota, General Motors, Ford, Daimler, and

Honda works under collaborative agree-

tasks will be to warn the driver about
incoming collisions, suggest safe actions,
and ultimately take control of the vehicle to
prevent an otherwise certain collision. Several initiatives
are taking place, including the Crash Avoidance Metrics
Partnership (CAMP) [2] and Vehicle Infrastructure Inte-
gration Consortium (VIIC) [3], [4] in the United States,
the Car-2-Car Communications Consortium in Europe
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ment with the U.S. Department of Trans-
portation Joint Program Office.). Specifically,
reducing collisions at traffic intersections,
mergings, and roundabouts is a central part of these initia-
tives [28]. Positioning (differential global positioning
systems) and wireless communication (dedicated short-
range communication 5.9 GHz in the United States)
technologies are becoming more advanced, while their
cost is declining to the point that ITS can be employed
to improve in-vehicle production safety systems by the
automotive industry. In the near future, ITS is expected

1070-9932/11/$26.00©2011 IEEE



to become more comprehensive connecting vehicles with
each other and with the surrounding road infrastructure
through vehicle-to-vehicle and vehicle-to-infrastructure
wireless communication.

In order for the in-vehicle cooperative active safety sys-
tems to be a realistic solution to decrease the number of acci-
dents, they should be safe by design while adapting to the
presence of human-driven vehicles. Hence, the control algo-
rithms developed for guaranteeing safety must be able to
operate in this semiautonomous real-world scenario as long
as roadside infrastructure provides an approximate position
of noncommunicating vehicles. An interesting challenge is
that a conventional approach that accounts for the worst-case
uncertainty due to human driving decisions would not be
practical as too conservative solutions would result. Conserv-
ative solutions cannot be considered for deployment as they
would cause false alarms, leading the users to loose trust in
the safety system and to routinely neglect its warnings.

There is a rich literature about the classification through
hybrid dynamical models of human behavior in structured
tasks (see [15] and [16] and the references therein). These
works show that human behavior can be recognized, pro-
vided certain identifiability assumptions are satisfied. In this
article, we propose an approach in which human driving
behavior is modeled as a hybrid automaton in which the
mode is unknown and represents a primitive driving
dynamics such as braking and acceleration. On the basis of
this hybrid model, the vehicles equipped with the coopera-
tive active safety system estimate in real time the current
driving mode of noncommunicating human-driven vehicles
and exploit this information to establish the least restrictive
safe control actions. This type of solution leads to less
conservative safety controllers than those that treat human-
driven vehicles as enemies to be counteracted for the worst-
case scenarios. This approach can be formulated as a safety
control problem for hybrid automata with imperfect mode
information [37]—[39]. Specifically, in [37] and [38], a mode
estimator is constructed, which keeps track of the current
mode uncertainty based on continuous state measurements.
For each current mode uncertainty, a mode-dependent cap-
ture set is constructed, which determines the set of all
continuous states that lead to an unsafe configuration for
the given mode uncertainty. Then, a hybrid feedback map is
computed for each mode uncertainty that keeps the contin-
uous state outside of the current mode-dependent capture
set. These algorithms are provably safe and least restrictive.

Related Work

Although the safety control problem for hybrid systems has
been extensively considered when the state is measured
(18], [22], [26], [31], [32], [34], [35], the same control prob-
lem has been receiving less attention when the mode is
unknown. A number of works have addressed the control
problem for special classes of hybrid systems with imperfect
state information [12], [13], [20], [37]—[39], [41]. There has
been a wealth of work on employing hybrid system models

and formal methods to generate collision-free trajectories in
multivehicle and multirobot systems. The automated high-
way system (AHS) by the California Partners for Advanced
Transportation Technology in the 1990s is an early example.
The objective of the AHS project was the development of
fully autonomous highway systems, mainly based on the
concept of platooning, to increase traffic throughput, safety,
and fuel efficiency [21]. In the context of platooning, a num-
ber of papers have proposed a formal hybrid modeling and
control approach based on the computation of a safe set of
initial conditions (the com-

plement of the static cap- @
ture set), optimal control,
and game theory [8], [19],

The human-driven vehicle

[24], [25]. A decentralized  follows the outer path,
cooperative policy for

conflict resolution in while the autonomous
multivehicle systems with

guaranteed safety has  yahjcle follows the
been proposed in [29].

Since conflicts are res- inner path.

olved locally, the complex-

ity of the control policy is
independent of the num-
ber of vehicles. Other approaches have been focusing on
formal methods for collision detection based on stochastic
reachability analysis (see [7] and the references therein).
Formal reasoning for both design and verification for autono-
mous vehicles driving in the presence of human drivers has
been developed and implemented in the 2007 Defense Ad-
vanced Research Projects Agency (DARPA) Urban Challenge
by many of the participating teams [11]. The behavior predic-
tion for human drivers has also been widely investigated (see
[23] and [30]). Yet, formally including these predictions into
planning mostly remains an open question [11].

Safety Control Problem for

Hidden-Mode Hybrid Systems

In this section, we formally introduce the safety control prob-
lem for hidden-mode hybrid systems (HMHSs) and provide
the solution as it has been proposed in earlier works [37]-[39].

Definition 1
A hybrid automaton with uncontrolled-mode transitions H
isatuple H= (Q,X,U,D, Z,Inv,R, f) in which Q is the
set of modes; X is the continuous state space; U is the
continuous set of control inputs; D is the continuous set
of disturbance inputs; X is the set of disturbance events
that trigger transitions among modes; Inv = {€} is the
discrete set of silent events, which correspond to no transi-
tion; R: QXX — Q is the mode-update map, and
f: XX QX UXD — X is the vector field, which is allowed
to be piecewise continuous with its arguments.

The hybrid trajectories (q(t),x(t)) of H are piecewise
continuous signals with transitions because of the occur-
rence of discrete events (see [26] for details).
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Definition 2
A HMHS is a hybrid automaton with uncontrolled-mode
transitions in which the discrete state () is not measured and
the initial mode g is only known to belong to a set go C Q.
Let Bad C X be a bad set of states; the control task is to
keep the continuous state x(t) outside Bad for all time
using the available infor-

e  mation (x(t), u(t), go).

The objective of the AHS Application Scenario

roiect was the Referring to Figure 1, we
proj assume that the infra-
development of fll"y structure measures the
position and speed of

autonomous highway Vehicle 2 through roadside

sensors such as cameras
and magnetic induction

systems to increase traffic uctor
loops and transmits this

information to the onboard
thl'OllghPllt, safety, and controller of Vehicle 1.
fuel efficiency Vehicle 1 has to use this

information to avoid a

collision. Vehicle 1 longi-
tudinal dynamics along
its path is given by the second-order system p; =
Vi, ¥1 =au+ b — cv3, in which p; is the longitudinal dis-
placement of the vehicle along its path and v, is the longitudi-
nal speed (see Figure 1), u € [ur, uy] is the control input
(positive when the vehicle accelerates and negative when the
vehicle brakes), b < 0 represents the static friction term, and
¢ > 0 with the cv} term modeling air drag (see [40] for more
details on the model). Vehicle 2 is controlled by a driver.
There has been a wealth of work on modeling human driving

Uy

D Conflict Area

Autonomous

L7

Human Driven /p2 '

Figure 1. Two-vehicle conflict scenario. Vehicle 1, whose
longitudinal displacement and speed are denoted as p; and v;,
respectively, is autonomous and communicates with the
infrastructure via wireless. Vehicle 2, whose longitudinal
displacement and speed are denoted as p, and v,, respectively,
is human-driven and does not communicate with the
infrastructure. A collision occurs when more than one vehicle
occupies the conflict area at the same time.
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behavior through hybrid systems, wherein each mode corre-
sponds to a primitive behavior such as braking, acceleration,
steering, run out, and lane change maneuver [6], [33].

We model human driving behavior in the proximity of
an intersection through a hybrid system with two modes:
braking and acceleratioﬁn,i ie, pp=mw, = ﬁq + yqd,
withq € {A, B}, d € [—d, d], in which p, is the longitudinal
displacement of the vehicle along its path and v, is the longi-
tudinal speed (see Figure 1), d > 0, q is the mode with g = B
corresponding to braking mode and g = A corresponding to
acceleration mode, and Vg > 0. The value of ﬁq corresponds
to the nominal dynamics of mode g; thus, we have fz < 0
and i, > 0. The disturbance d models the error with respect
to the nominal model. This implies that if v, € f,+
74[—d. d], the current mode can be mode g. This allowed error
in each mode captures the fact that there are several ways in
which modes A or B can be realized (e.g., having harder brak-
ing or softer braking and harder acceleration or softer accelera-
tion). It also captures variability among drivers. Finally, we
assume that there is no transition between modes, ie., the
driver cannot change his/her mind. This is a reasonable
assumption when one models the behavior of vehicles that are
close enough to the intersection. Models considering transi-
tions from acceleration to coasting and to braking have been
considered in [39]. More complex models involving arbitrary
transitions among modes will be considered in future work.
Since the vehicles do not go in the reverse direction, there is a
lower nonnegative speed limit denoted as vp,. Note that a
strictly positive vy, also guarantees the liveness of the system
preventing vehicles to stop. Similarly, we allow an upper speed
limit (which could be infinity), denoted as Vy,x, with respect to
speed limitation regulations in the proximity of intersection.

The intersection system is a hybrid automaton with
uncontrolled mode transitions H, in which Q = {A, B};
X=R*Y and x€X is such that x = (p;,vy,ps )
U = [u,ug] C Ry D = [~d,d] C R; £ = @ as there is no
transition allowed between the modes; R: Q X X — Q is
the mode update map, which is trivial as X = @, and
f:XXQXUXD — X is the vector field, which is piece-
wise continuous, and it is given by f(x,q,u,d) =
(i (p1, v1, u), fo(p2, v2, g, d)) in which

V1
0 if (Vi = Vpin and o; < 0) o1

hlprviu) = (Vi =Vmax and oy >0) |, 1)
o otherwise
with oy = au + b — cv}, and
V2
0 if (v, =vminand o, < 0) or
fr(prv2nq,d) = ; ’ )

(vi =Vmaxand o, >0) |,
o otherwise

with o = , 4 7,d. Referring to Figure 1, the set of bad states
for system H models collision configurations, and it is given
by Bad := {(p1,v1, p2,v2) € R* [ (p1, p2) € [L1, Ur] X [Lo, U]}



Problem Solution

The control problem can be interpreted as a game between u
and d in which d has full information about the environment
state (the mode) while u is uninformed. In the theory of
games, such problems with imperfect information have been
elegantly solved by first translating them into equivalent
problems with full-state information and then leveraging the
available techniques for solving games of perfect information
[36]. To formulate an equivalent problem with full-state
information, an estimator is introduced. For details on the
conditions for equivalence, the reader is referred to [37]—[39].

Definition 3

An estimator is a hybrid automaton with uncontrolled
mode transitions H = (Q, X, U,D, Y,Inv, R f) in which
QC2% Inv={e}, [ XxQxUX D—2¥is a set-
valued map such thatf %Gt d) == ey fx:q,u,d), q(t)
is such that gq(t) € g(t) for all t >0, and Xx(t) Gf(x(t)

q(t), u(t), d(t)) while g(t) is constant.

Here, 22 denotes the set of all subsets of Q. The estimator
keeps track of a set of possible modes compatible with the
measurements and with the system dynamics (see [10] and
[14] and the references therein). Here, we show how to con-
struct a suitable estimator for the application example.

Application Scenario
We have H=(QX,U,D,Y,Inv, Rf), in which
Q={q1,42,q3} with g1 = {A,B}, g = {A}, 45 = {B},
and g(0) = ;. We define Y = {y4,yp}. Starting in ¢,
event y, occurs as soon as B is not currently possible given
the measurement x, and event yg occurs as soon as A is not
currently possible given the measurement x. This results in
the map R defined as R(ql,yA) =, and f{(ql,yg) =5
leads to the automaton given in Figure 2.

To establish when A or B is ruled
out given the measurement of x, we
consider the estimate ,B(t) (1/t)
fovz(r)d‘c t>T, where T>0 is a
time window. Note that, in practice,
we will not require measurement
of acceleration, as we will consider
discrete time models where derivative
is replaced by time anticipation. If
the mode is g, then we necessarily
have that |3(t)— Bal < g d. Thus, for
t>T, define y(t)=ya 1f|ﬁ(t) Bs| >
vads y(t)=yp if |B(&)=Bal>7ad,
and y(t) =€ otherwise.

Basically, the continuous dynam-
ics of H describes a set of dynamics
of x that are compatible with the
current discrete state estimate. Let
#:QxX — U be a feedback map.
We denote the x trajectories of the
closed-loop system by qﬁg(t, (40> x0),
d,y), which are given by the

(\

X €

%= {A)
fi(p1, v4, U)
U/\ f2(p2’ Vo, q, D)
qgeq,

system H in which we have set u(t) = 7(q(t), x(t)). The cap-
ture set for system H is given by C := (. e (4% C; 3)> in
which Cj:= {x € X|V#,3d,y,t>0s.t. someqS (t, (q,xo)
dy) € Bad} is called a mode-dependent capture set. It is
the set of all continuous states that are taken to Bad for all
feedback maps when the initial mode estimate is equal to g.

Problem 1
Determine the set C and a feedback map 7 that keeps any
trajectory starting outside C outside it.

We briefly describe the solution as it appears in
[37]-[39]. For this purpose, for any q € Qand F C X, define
the operator Pre as Pre(q, F) := {x € X|V7, 3d, t >0
s.t.some qﬁg(t, (g, x), d,e) € F}, in which d)g(t, (g,x),d, ¢)
is the continuous trajectory of H when the mode §(t) stays
constant. Hence, Pre(g, F) is a set of all continuous states that
are taken to F for all feedback maps when the mode estimate
is kept constant to g. The sets (A?q for § € Q can be obtained
as a fixed point of the following algorithmic procedure.
Let Q={q1,...,qm},S; CXforic {1,...,M}, and define
S=(S1,...,Sp). We define the map G: (2X)M — (2¥)M as

Pre(@]l, U{j‘quR(ql,Y)} S] U Bad)
G(S) := :
Pre (qM’ UUI@]‘ER(QM’ Y)} S] U Bad)

Algorithm 1

SO =(59, 83, .. =@, ...
S' = G(S°)
while 51 £ Sk do
Sk+1 :G(Sk)
end while.

. 9)

/

43 ={B}
fi(py, vy, U)
U f2(P2 Vo, g, D)

Figure 2. Hybrid automaton H.
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If Algorithm 1 terminates, the fixed point is equal to the
tuple of sets (th’ RN CQM) (see [38] for details). We next
show how to calculate the steps of this algorithm for the
hybrid automaton of Figure 2.

Application Scenario X
Referring to Figure 2, we have the system H such that
Q={q1 » g3} with g ={AB}, g ={A}, and
g5 = {B}. As a consequence, Algorithm 1 leads to

Pre(g,,S, U S3 U Bad)
Pre(g,, Bad)
Pre(g,, Bad)

G(S) =

so that

Pre(q,, Bad)
Pre(q,, Bad)
Pre(q,, Bad)

st =

and

Pre(g,, Pre(q,, Bad) U Pre(g,, Bad) U Bad)
Pre(g,, Bad)
Pre(g,, Bad)

2=

The first component of this expression means that, when
the system starts in mode §;, the trajectory can enter Bad
by flowing in §; or by first transitioning to g, or g5 and
then by flowing in either of these modes. By the proper-
ties of the Pre operator (refer to [37] and [38]), since
42,43 C qi, it can be shown that Pre(g,,Pre(q,,Bad)U
Pre(g,, Bad) U Bad) = Pre(q;,Bad) so that Algorithm
1 terminates at the second step. Therefore, we have
that C;h = Pre(q;,Bad), C;h = Pre(q,,Bad), and th =
Pre(gs, Bad).

Computational Tools

The sets Pre(g, Bad) can be computed by linear complexity
algorithms. This is because for every mode estimate g the
continuous dynamics is the parallel composition of two
order-preserving systems, and the bad set is convex [13],
[20]. Specifically, for the application example, define the
restricted Pre operators for i € {1,2,3} Pre(g;,Bad),, :=
{x€X|3d, t>0s.t. some ¢.(t,(g;, x), ur, d,€) € Bad} and
Pre(g;,Bad),,, := {x € X|3d, t > 0 s.t. some ¢;(t, (g, X),
uy,d,€) € Bad}. Then, we have that (refer to [20])
Pre(g;,Bad) = Pre(g;, Bad),, NPre(g;,Bad),,, fori € {1,2,3}.
Each of the sets Pre(g;,Bad),, and Pre(g;,Bad),, can be
computed by linear complexity discrete time algorithms
(see the “Experimental Setup” section).

For each mode g; for i € {1,2,3}, a safe control map
(g, x) acts in such a way to maintain the state outside the cur-
rent mode-dependent capture set C‘gz. This results in a map
71(q;> x) that makes the vector field point outside set C;L_ when x
is on the boundary of C; . One can show (refer to [20]) that a
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control map 7(g;,x) that maintains the state x outside
Pre(q;, Bad), which is equal to C;, for the application, is given by

Uy ifx € Pre(qi,Bad)uL N OPre(g;, Bad)uﬂ
ur ifx € Pre(qi,Bad)uH N 8Pre(21i,Bad)uL
{ug,ur} ifx € 8Pre(21i,Bad)uH N OPre(g;, Bad),

U otherwise.

Since we have that Pre(g;,Bad) C Pre(q;,Bad) for
i € {2,3}, when the mode switches from ¢; to ¢, or from
q1 to g3, the continuous state x being outside Pre(q;, Bad)
implies that it is also outside Pre(q,, Bad) and Pre(g;, Bad).
Therefore, the above feedback map guarantees that the
state never enters the capture set.

Experimental Setup

The two-vehicle conflict scenario of Figure 1 was
implemented in an in-scale multivehicle lab. The labora-
tory is equipped with an overhead camera-based position-
ing system, a control station, a human—driver interface, the
roundabout system, and six scaled vehicles (https://wikis.-
mit.edu/confluence/display/DelVecchioLab).

A car chassis (length 0.375 m, width 0.185 m, and
wheelbase 0.257 m) is used as the hardware platform for
the scaled vehicle. The vehicles are equipped with an
onboard computer (Mini ITX) and a motion controller.
The longitudinal dynamics is dynamically similar to that
of a high-mobility multipurpose wheeled vehicle (HMMWYV)
[40]. One of the scaled vehicles is configured to be an
autonomous vehicle that can follow a predefined path
and control its throttle/brake input while another acts as
a human-driven vehicle that can be driven by a human
driver using a human—driver interface. The human-
driver interface comprises a steering wheel and two ped-
als for throttle and brake commands (see Figure 3). The
hardware used is a Logitech MOMO force feedback rac-
ing wheel and pedal set. The hardware is connected to the
control station via a Universal Serial Bus (USB) cable,
and the input command from the hardware is transmitted
to the vehicle via the wireless connection.

Figure 3 shows the roundabout system. There are
two circular paths that share a common section on a
6 m X 6 m arena. The human-driven vehicle follows
the outer path while the autonomous vehicle follows the
inner path. Both vehicles travel in an anticlockwise
direction. A collision is possible at the intersection
when both vehicles are in the area shaded red (Figure 3)
at the same time. This area corresponds to the set
{(p1,p2) | (p1p2) € [L1, Uy] X [La, U]}. The maximum
vehicle speed is 1,100 mm/s, and the minimum speed is
350 mm/s. A software module on all the vehicles maintains
the speed between the specified bounds. When the two
vehicles are simultaneously present in the shared path
(between points Pt; and Pt,), another software module pre-
vents rear-end collision by appropriately accelerating or
decelerating the autonomous vehicle when the two vehicles



are too close. The maintain speed and rear-end collision
prevention modules are based on a simple proportional-
integral differential (PID) control scheme. The positioning
system transmits the position information to the vehicles
over the wireless network.

Learning Human Driving Model

A set of experiments were performed in which five
human subjects drove a vehicle on the outer path in the
roundabout system in ten acceleration and ten braking
trials each. In these experiments, the subjects were
directed to either brake or accelerate at the human-deci-
sion point D" in Figure 3 while also avoiding a moving
target on the inner path. The data collected in these brak-
ing and acceleration trials were then analyzed to estimate
the parameters f8; and y, and presented in the “Safety
Control Problem for Hidden-Mode Hybrid Systems” sec-
tion. We denote the position measurement at time step k
as p(k) with dT = 0.1 s as the time lapsed between two
consecutive steps. The acceleration/deceleration at time
step k is denoted as a(k) and is calculated as a(k) =
p(k) — 2p(k — 1) + p(k — 2)/dT?. The average accelera-
tion/deceleration is calculated for the trial as a =
1/N — 134, a(k). A total of 99 trial runs were obtained.
These trials were divided into a training set and a test set.
The model of the driver behavior was then obtained by
fitting two Gaussian distributions to the training data for
braking and acceleration trials and then using the test
data to verify the model. More than 1,000 randomly

Multivehicle
Laboratory

chosen training and test sets were considered. The aver-
age training and test errors are 0.56% and 0.96%, respec-
tively. As the final model, we chose one with zero training
and test errors, in which 79 trials were used as the train-
ing set (40 braking and 39 acceleration trials) and 20 trials
were used as the test set (ten braking and ten acceleration
trials). The resulting values of the model parameters in
(2) are given by f; =—282.7 mm/s* and f, = 350.5 mm/
s 2. The values of y; and 7, are given by y, = 139.6 mm/
s? and y; = 106.6 mm/s*>. We set d = 3 corresponding to
three standard deviations.

Trials Experimental Conditions

A total of eight human subjects participated in the study.
This set of subjects is different from the set used to gener-
ate the human driving model. To start the experiment, the
subjects were given an introduction about the setup. This
was followed by a practice session in which the subject drove
the vehicle on an outer path. The autonomous vehicle was
run on the inner path at a constant speed of 500 mm/s. Sub-
jects were free to drive the human-driven vehicle at any speed
between the points Pt; and Pt,. Between points Pt, and
DF, the speed module keeps the vehicle speed at 600 mm/
s. This ensures that the human-driven vehicle does not
cross the decision point with minimum or maximum
speed. Thus, we instructed the human subjects to either
accelerate or decelerate as soon as they crossed the deci-
sion point D to force the two vehicles in the bad set at
the same time.

Autonomous Vehicle

Human-Driver

Interface Outer Path

- :.
7
Human-Decist

Throttle
Point, DF —7

Pedal

Inner Path

Human-Driven Vehicle

LO=14.22m, L, =12.414m, U, =13.314m

L'=11.62m, L, =7.863m, U, = 8.763 m

Figure 3. Human—driver interface and roundabout system. L is the length of the outer path, and L' is the length of the inner path.
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Figure 4. (a), (b), (d), and (e) show the displacement of autonomous and human-driven vehicles along their paths on the x and
y axis, respectively, along with the corresponding snapshots from the experiment. The slice of the current mode-dependent capture set,

corresponding to the current velocity of the two vehicles, is shown as the area shaded in red. In the case when the hidden mode is
not known, both braking and acceleration are taken as possible modes resulting in a larger capture set (a). (Continued on next page)
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Figure 4. (Continued) With more data, the estimator identifies the mode as acceleration and thus the capture set shrinks (d). The
control input is applied in (b) since the predicted state (denoted by red circles) enters the capture set. The applied control keeps the
two vehicles from entering the bad set as shown in (e). The velocity is shown in (c), and the control input is shown in (f).
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Mode Estimator Implementation

We use a discrete time form of the estimator proposed in the

“Problem Solution” section. Since the driver decides to switch

the mode to brake or accelerate once the human-driven vehi-

cle crosses D, the mode estimator running on the autono-
mous vehicle uses the

e  continuous state measure-

The human-—driver interface  ™ents of the human-
driven vehicle after it

crosses DP. The instance
n = 0 corresponds to the
time step when the human-
driven vehicle crosses this
decision point. We take
N =20 and consider

comprises a steering wheel
and two pedals for throttle

and brake commands.

® n > N. At the nth time

step after the human-
driven vehicle crosses the human:decision point, the estimate
is calculated by using the formula: f(n) = (1/n — 1)Z}_,a(k).
Hence, n time steps after the human-driven vehicle crosses
the decision point, y(n) is given by y(n) =ya if
1) — Bal > 7ads y(w) =y if [B(n) — Ba] > 7ad. and

y(n) = e otherwise.

Control Map Implementation
We introduce the following discretization of system H
given in (1) and (2) (employing forward Euler approxi-
mation) with step size dT >0, i € {1,2}, and index
jo pili+ 1] =pilil + il 0[j]) and vifj+1]=F [,
a;[j]), where F’ = dT vilj], F(vlj], ulj]) = wilj] + dTy
(vilf], oulf])s y(v,-, o) = o if vi+ o;dT < Vmax and v+
o dT > Viin, YV, 0) = (Vmax — v3)/dT if v; + 0;dT >
Vinax> a0d Y(v;, ;) := (Vmin — v;)/dT if v; + o;dT < Viin.
We define the notation for a sequence of constant
inputs o; for i € {1,2}: F*°(v, o;) := v; and F**!
(v, o) := F(F**(v;, o;), o) with k € N. The value of
pilk] starting from initial conditions (pi> vi) can be calcu-
lated as p;[k] = p; + Zk »Fi(FY (v, o), o). Since Bad =
[L1, U] X RX [Ly, Uy] X [RQ deﬁne for i € {1,2} the sequen-
ces L¥(vi, o)=L =Y 1) Fi(FY(vi,),m), U(vy,0on):=
2" R ), I amax(o)m o= 3 oFi
(F ](Vz)maX(Oﬁz)) max(02)), UX(v,,min(a,)): —Uz—Z OF’
(F” (v,,min(e)),min(,)), where max(o)= f —i—yqd and
min(o)=f, /qd when §=g, while max(o;)=p,+y.d
and min(o,)=pz—73d when g={A,B}. Then, one can
show that Pre(g, Bad),, = {x€X| k> Os.t.L’f(vl, o) <p1 <
U{‘(vl, o;) and L’g(vz, max (0)) < pa < Ué‘(vz, min (ocz))}.
and Pre(g,Bad),,,
are computed for the given pair of speeds (v;,v,) as a union

Hence, given mode estimate g, Pre(g,Bad),,,

of rectangles in the position plane. Checking whether a
point x=(p1,v1,p2,v2) is in Pre(g,Bad),, N Pre(g,Bad),,, is
performed by comparing (p;, p,) against the upper and lower
bounds L¥, U L%, and U¥. Moreover, to check whether
p1€[LF, UL, it is enough to compute such intervals only
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while Uf>p, since the sequences {L¥},.o,{Uf}zp,
{L5}ieor and {US},, are strictly decreasing [20]. Thus,
we only need to make a finite number of computations.

To implement the feedback map 7(g, x) of the “Problem
Solution: Computational Tools” section, we need to track
when the continuous flow hits the boundary of the relevant
set Pre(.,.). In discrete time, we consider the continuous
state to be on the boundary of Pre(.,.) when it is outside it
while its prediction forward in time is inside it. To make
this procedure robust to both communication and actuator
delays, we consider ten forward predictions in time instead
of only one.

Experimental Results

The cumulative time for which the trials were conducted is
3,479 s, resulting in a total of 97 instances of collision
avoidance in which the autonomous vehicle applied con-
trol to avoid a collision. In doing so, the autonomous vehi-
cle entered the capture set in three such instances and
resulted in a collision in one such instance, resulting in an
overall success rate of 96.9%. During the total duration of
the experiments, the mode was estimated as A (accelera-
tion) 102 times, as B (braking) 45 times, and remained at
{A, B} (acceleration or braking) nine times. These results
are presented in Table 1. All mode estimations are correct.
Figure 4 shows a collision-avoidance instance when the
human-driven vehicle mode was identified as A.

Discussion and Conclusions

In this article, we have illustrated the application of a formal
hybrid control approach to design semiautonomous multi-
vehicle systems that are guaranteed to be safe. Our experi-
mental results illustrate that, in a structured task, such as
driving, simple human-decision models can be effectively
learned and employed in a feedback control system that
enforces a safety specification. They also highlight how the
incorporation of these models in a safety control system
makes the control actions required for safety less conserva-
tive. In fact, by virtue of the mode estimate, the current
(mode-dependent) capture set to avoid guaranteeing safety
is considerably smaller than the capture set to be avoided
when the mode estimate is not available. This is essential for
the practical applicability of cooperative active safety sys-
tems. In our data set, the flow entered the capture set only
3% times. These failures are mainly due to communication
delays between the vehicles and the workstation. These
delays, when significant, cause the calculated capture set to
be different from the actual one and hence may cause to
enforce control too late. These delays, in future work,
should be formally accounted for in the models and in the
safety control algorithm.

More complex models of human decisions in the
proximity of an intersection and the incorporation of addi-
tional details, such as weather conditions and road geome-
try, offer the potential for reducing the conservatism of safe
control actions even further. Future work will also consider



Table 1. Mode estimation for various subjects.

Number Times

Subject Duration Mode Mode Mode of CA Times Entered
Number (s) A B {A,B} Instances Entered C Bad

1 374.8 9 6 1 14 1 0

2 265 8 5 0 8 1 0

3 258 5 3 1 5 1 1

4 670 18 6 2 19 0 0

5 560 17 7 3 6 0 0

6 230 11 2 0 7 0 0

7 522 16 10 0 16 0 0

8 600 18 6 2 22 0 0

The first column shows the subject number, the second column presents the total trial time, the third, fourth, and fifth columns show the number of
times the mode was identified as acceleration {A}, braking {B}, or remained at {A, B}, respectively. The sixth column shows the number of collision-
avoidance instances generated by the subject. The seventh column shows the times the flow entered the capture set. The last column shows the

number of times the flow entered the bad set Bad.

the extension to the case in which vehicles are not known
to evolve on a fixed route. This case will be handled by
keeping track of routes that are compatible with the posi-
tion and speed of the vehicle and by progressively eliminat-
ing those that become incompatible. The models considered
here are deterministic because most of the tools currently
available to perform safety control have assumed determin-
istic models, wherein uncertainty is bounded. However,
human decision models are more naturally captured by
stochastic frameworks, in which uncertainty due to varia-
bility in both subjects and realizations of the same deci-
sion is probabilistic (see [27] for a review on the topic).
As results in stochastic safety verification and design
become available [5], [9], it will be important to extend
the proposed techniques of this article to safety control of
stochastic hybrid automata in which the mode estimate is
constructed probabilistically.

By virtue of the order-preserving dynamics of the
vehicles and the fact that the bad set is convex, the complex-
ity of the algorithm that calculates the capture set (Algo-
rithm 1) is linear with the number of continuous variables
and inputs (see [13] and [20]). Hence, the algorithm can be
efficiently implemented in real time. When there are more
than two vehicles, the bad set is not convex, and in general,
determining an exact solution is harder. However, one can
perform modular synthesis in which a two-vehicle collision
avoidance routine is employed as a control primitive [17],
or exploit the order-preserving structure of the system to
obtain suitable abstractions for which the problem is com-
putationally simpler. This is subject of current research.

Finally, in any real-life implementation of cooperative
active safety systems, the algorithms implemented by the
autonomous vehicle should be capable of interacting with
a human driver. In other words, they should first warn the
driver, suggest actions, and take control of the vehicle only
when the driver is incapable of preventing a collision.
Hence, future work will consider the incorporation of
human response time to warnings in the algorithms and

the problem of establishing when it is absolutely necessary
to override a human driver for maintaining safety.
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