Model reduction and stochastic analysis of the histone modification circuit

Simone Bruno and Domitilla Del Vecchio

Abstract—Epigenetic cell memory (ECM), the inheritance of gene expression patterns without changes in genetic sequence, is a critical property of multi-cellular organisms. Chromatin state, as dictated by histone covalent modifications, has recently appeared as a mediator of ECM. In this paper, we conduct a stochastic analysis of the histone modification circuit that controls chromatin state to determine key biological parameters that affect ECM. Specifically, we derive a one-dimensional Markov chain model of the circuit and analytically evaluate both the stationary probability distribution of chromatin state and the mean time to switch between active and repressed chromatin states. We then validate our analytical findings using stochastic simulations of the original higher dimensional circuit reaction model. Our analysis shows that as the speed of basal decay of histone modifications decreases compared to the speed of autocatalysis, the stationary probability distribution becomes bimodal and increasingly concentrated about the active and repressed chromatin states. Accordingly, the switching time between active and repressed chromatin states becomes larger. These results indicate that time scale separation among key constituent processes of the histone modification circuit controls ECM.

I. INTRODUCTION

Epigenetic cell memory (ECM), the inheritance of gene expression patterns without changes in genetic sequence, is the property according to which cells with identical genomes can maintain distinct identities for the lifetime of a multi-cellular organism. This enables co-existence of different cell states that do not spontaneously interconvert among each other despite the influence of noise. The ECM question has been addressed mostly in the context of gene regulatory network (GRN) models and by determining topologies and parameters that allow multi-stability [1]–[6]. More recently, it was noted that these models do not account for chromatin state, as determined by covalent modifications to histones and DNA [7]. Yet, the state of chromatin has appeared a key mediator of long-term memory of gene states [8].

In this paper, we analyze the dynamics of a ubiquitous circuit motif among histone modifications [9] and determine how its kinetic parameters affect the duration of memory of chromatin states. To this end, we first show that our deterministic model is a singularly perturbed system [10] and apply a proper reduction method to obtain a one-dimensional reduced model suitable for analytical investigation. Then, we analytically evaluate the stationary distribution of the corresponding one-dimensional Markov chain by applying detailed balance [11] and determine the parameter conditions that give a bimodal distribution with peaks at the active and repressed chromatin states. We then derive an expression for the time to memory loss, defined as the mean value of the earliest time the active state reaches the repressed state and vice versa by first step analysis [12]. We finally validate the analytical findings by conducting a computational study of the original circuit reaction model using Gillespie’s Stochastic Simulation Algorithm (SSA) [13]. Research on the dynamics of histone modifications conducted in the past decade has considered bistability as a model property embodying ECM [9], [14]–[19]. However, there has not been any investigation on the key determinants of the temporal duration of memory, which is the question addressed in this paper.

This paper is organized as follows. In Section 2, we describe the molecular reactions constituting the histone modification circuit. In Section 3, we present the deterministic model reduction approach to obtain the one-dimensional reduced model. Then, in Section 4 we analytically investigate the properties of the resulting one-dimensional Markov chain and use stochastic simulation of the original reaction model to validate the analytical findings. Conclusive remarks are presented in Section 5.

II. HISTONE MODIFICATION CIRCUIT REACTION MODEL

In this paper we focus on the reaction model of the histone modification circuit shown in Fig. 1(a). It includes H3K9 methylation and H3K4 methylation/ acetylation and it is developed by exploiting the detailed
characterization of the molecular properties of these modifications done in the past years [21–25]. This model has the nucleosome with DNA wrapped around it, D, as basic unit that can be modified either with H3K4 methylation/acetylation, DA, or H3K9 methylation, DR. H3K4 methylation/acetylation are associated with active chromatin state ([8], Chapter 3 and [23]), while H3K9 methylation (H3K9me1/2/3) is associated with repressed chromatin state ([8], Chapter 3 and [23]), while H3K9 methylation (H3K9me1/2/3) is associated with repressed chromatin state [26]. Now, let us give a concise summary of the key molecular mechanisms characterizing the histone modification circuit. H3K4 methylation/acetylation can be de novo established by the action of writer enzymes (reactions (1) in Fig. 1(a)) and can be maintained through a read-write process in which DA can recruit writers of the same modification [8] (reactions (2) in Fig. 1(a)). With similar processes, H3K9 methylation can be de novo established (3) in Fig. 1(a)) and maintained (③ in Fig. 1(a)). These modifications can both be passively removed through dilution due to DNA replication or through non-specific de-methylation/de-acetylation ([8], Chapter 22) (reactions ④, ⑤ in Fig. 1(a)), and actively removed by the action of eraser enzymes recruited by the opposite modifications (reactions ⑥ and ⑦ in Fig. 1(a)). Then, each histone modification creates a positive autoregulation loop and inhibits the other one. The histone modification circuit are listed in Fig. 1(a) and the corresponding circuit is represented in Fig. 1(b).

We next derive the associated ordinary differential equation (ODE) model. In particular, we assume that D$^\text{tot}$, that is, the number of total modifiable units, is sufficiently large such that the variables n_{D^A}, n_{D^R} and n_D can be considered real-valued. This allows us to write the ODEs in terms of the fractions $D^A = n_{D^A}/D^\text{tot}$, $D^R = n_{D^R}/D^\text{tot}$ and $D = n_D/D^\text{tot}$. We further introduce the normalized time $\tau = t k_M^\text{tot} D^\text{tot}$, in which $D^\text{tot} = D^\text{tot}/\Omega$ and Ω is the reaction volume; the normalized inputs $u_A = u_{A0} + u_A$ with $u_{A0} = k_{\text{W}A}/(k_M^\text{tot} D^\text{tot})$, $u_A = k_{A}^D/(k_M^\text{tot} D^\text{tot})$, $u_R = u_{R0} + u_R$ with $u_{R0} = k_{\text{W}R}/(k_M^\text{tot} D^\text{tot})$ and $u_R = k_R^D/(k_M^\text{tot} D^\text{tot})$ and the non-dimensional parameter $\alpha = k_{M}^{R}/k_{M}^{A}$. Furthermore, let us also introduce

$$\varepsilon = \frac{\delta + \bar{k}_E^A}{k_M^A D^\text{tot}}, \quad \varepsilon' = \frac{k_A^\text{tot}}{k_M^A}, \quad \mu = \frac{k_R^E}{k_E^A} \quad (1)$$

and let $(\delta + \bar{k}_E^R)/(\delta + \bar{k}_E^A) = b\mu$ with $b = O(1)$. This implies that μ quantifies the asymmetry between the erasure rates of repressive and activating marks. Furthermore, since $(\delta + \bar{k}_E^R)/(k_M^A D^\text{tot}) = b\varepsilon\mu$ and $k_R^E/k_M^A = \mu\varepsilon'$, it implies that ε is a parameter that scales the ratio between the basal erasure rate of each histone modification and the rate at which they are copied and ε' is a parameter that scales the ratio between the recruited erasure rate of each modification and the rate at which they are copied. Then, the ODEs describing the histone modification circuit can be written as follows:

$$\frac{dD^A}{d\tau} = (\bar{u}_A + \bar{D}^A) \bar{D} - (\varepsilon + \varepsilon' \bar{D}^R) \bar{D}^A \quad (2)$$

$$\frac{dD^R}{d\tau} = (\bar{u}_R + \alpha \bar{D}^R) \bar{D} - \mu (b\varepsilon + \varepsilon' \bar{D}^A) \bar{D}^R$$

$$\frac{d\bar{D}}{d\tau} = \left((\varepsilon + \varepsilon' \bar{D}^A) \bar{D}^R + (\varepsilon + \varepsilon' \bar{D}^R) \bar{D}^A \right)$$

with initial conditions such that $\bar{D} + \bar{D}^A + \bar{D}^R = 1$.

III. MODEL REDUCTION

In this section, we reduce the system (2) to a one-dimensional model by exploiting time scale separation between reactions. Specifically, we let $\varepsilon = \varepsilon \varepsilon'$ with $\varepsilon = O(1)$ and consider ε' as the small non-dimensional parameter encapsulating the time scale separation between autocatalytic reactions (faster) and erasure reactions (slower). This assumption is consistent with recent experimental data that suggest that the natural erasure of histone modifications is a slow process [27]. It further allows us to obtain an ε-dependent one-dimensional system whose properties as function of ε can be analytically determined. We then show computationally that

Fig. 1: Histone modification circuit: reactions and diagram. (a) Reaction list of the original histone modification circuit. A number, referred in the main text, is associated to each reaction. Specifically, reactions ① and ③ describe de novo establishment, ② and ⑤ describe self-maintenance, ④ and ⑥ represent basal erasure and ⑦ and ⑧ represent recruited erasure. The different colored boxes delimit the sets of reactions associated to the establishment (dark colors) and erasure (light colors) of DA (green) and DR (red). Here, to model the establishment and erasure of the histone modifications we exploit the one-step enzymatic reaction models [20]. (b) Diagram of the histone modification circuit, in which each arrow corresponds to the reaction with the box of the same color in (a).
the analytically obtained trends with ε are mirrored by the
original system where this time scale separation may not hold.

We first introduce the model reduction method con-
considered [10], and then we apply it to the histone mod-
ification circuit model (2). In particular, we will show
that with ε' as small parameter, the system model in
equations (2) belongs to the class of singularly
perturbed problems, which we introduce in the next
section.

A. Model reduction approach

Given a general dynamical system $\frac{dx}{dt} = f(x, t)$ with
$x \in \mathbb{R}^n$, let us define a smooth surface S in $\mathbb{R}^n \times \mathbb{R}$
as integral manifold of the system if any trajectory of
the system that has at least one point in common with
S lies entirely on S [28], [29]. Now, let us consider the system:

$$
e^\varepsilon \dot{x} = f_1(x, y_2, t, \varepsilon')
$$

$$
e^\varepsilon y_2 = f_2(x, y_2, t, \varepsilon')
$$

with $x \in \mathbb{R}^m$ and $y_2 \in \mathbb{R}^m$ and the matrix $A(x, y_2, t, \varepsilon')$
given by

$$A(x, y_2, t, \varepsilon') = \begin{pmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y_2} \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y_2}
\end{pmatrix} = \begin{pmatrix}
f_{1x} & f_{1y_2} \\
f_{2x} & f_{2y_2}
\end{pmatrix}
$$

If $A(x, y_2, t, \varepsilon')$ is singular on some subspace of
$\mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}$, system (3) is called a singular
singularly perturbed system [10]. Now, let us consider the following conditions [10]:

- **C1**: $f_2(x, y_2, t, \varepsilon') = 0$ has a smooth isolated
root $y_2 = \phi(x, t)$ with $x \in \mathbb{R}^m$, $t \in \mathbb{R}$ and
$f_2(x, \phi(x, t), t, \varepsilon') = 0$;

- **C2**: the matrix $A(x, y_2 = \phi(x, t), t, \varepsilon' = 0)$ has a m-
dimensional kernel and m corresponding linearly
independent eigenvectors, and the matrix

$$B(x, \phi(x, t), t, 0) = \frac{\partial f_2(x, \phi(x, t), t, 0)}{\partial y_2}
$$

has n eigenvalues $\lambda_i(x, t)$ such that $\text{Re}\lambda_i(x, t) \leq -2\alpha$, with $\alpha > 0$;

- **C3**: in the domain $\Omega = \{(x, y_2, t, \varepsilon') | x \in \mathbb{R}^m$, ||$y_2 - \phi(x, t)|| \leq \rho$, $t \in \mathbb{R}$, $0 \leq \varepsilon' \leq \varepsilon_0'\}$ the function f_1 and f_2 and the matrix A are continuously
differentiable ($k+2$) times, with $k \geq 0$ for some
positive ε_0' and ρ.

Furthermore, let us define the new variables $y_2 = y_1 + \phi(x, t)$ and introduce them in (3), obtaining

$$e^\varepsilon \dot{x} = C(x, t) y_1 + F_1(x, y_1, t) + e^\varepsilon X(x, y_1, t, \varepsilon')$$

$$e^\varepsilon \dot{y}_1 = B(x, t) y_1 + F_2(x, y_1, t) + e^\varepsilon Y(x, y_1, t, \varepsilon')$$

in which

$$C(x, t) = f_{1y_2}(x, \phi(x, t), t, 0),$$

$$B(x, t) = f_{2y_2}(x, \phi(x, t), t, 0),$$

$$F_1(x, y_1, t) = f_1(x, y_1 + \phi(x, t), t, 0) - C(x, t) y_1,$$

$$F_2(x, y_1, t) = f_2(x, y_1 + \phi(x, t), t, 0) - B(x, t) y_1,$$

$$X(x, y_1, t, \varepsilon') = f_1(x, y_1 + \phi(x, t), t, \varepsilon'),$$

$$Y(x, y_1, t, \varepsilon') = f_2(x, y_1 + \phi(x, t), t, \varepsilon'),$$

for $i = 1, 2$, satisfying $||F_i(x, y_1, t)|| = O(||y_1||^2)$
and $e^\varepsilon - 1 F_i(x, \varepsilon', y_1, t)$ continuous in ε, with Ω defined
in condition C3 [10]. At this point we can apply Theorem
7.1 from [10], which claims that if conditions C1 - C3
are satisfied, then there exists an ε'_1, $0 < \varepsilon'_1 < \varepsilon_0'$, such
that, for any $\varepsilon' \in (0, \varepsilon'_1)$, system (6) has a unique slow
integral manifold $y_1 = e^\varepsilon h(x, t, \varepsilon')$ exponentially
attractive and the motion along this manifold is described by the
equation:

$$\dot{x} = X_1(x, \varepsilon', \varepsilon')$$

with $X_1(x, \varepsilon', \varepsilon') = C(x, t) h(x, t, \varepsilon') + X(x, \varepsilon' h, t, \varepsilon') +
\varepsilon' - 1 F_1(x, \varepsilon' h, t)$ and the function $h(x, t, \varepsilon')$ is k times
continuously differentiable with respect to x and t
[10], [30]. Since for a sufficiently small ε' the slow
integral manifold is exponentially attractive, then, for
any solution $x(t), y_1(t)$ of (6) with initial conditions
$x(t_0) = x_0, y_1(t_0) = y_{10}$ such that $|y_{10} - e\varepsilon h(x_0, t_0, \varepsilon')|$ is
sufficiently small, we have a solution of (8) such that

$$x(t) = \bar{x}(t) + \zeta_1(t),$$

$$y_1(t) = \varepsilon' h(\bar{x}(t), t, \varepsilon') + \zeta_2(t),$$

with $\zeta_1(t) = O(\varepsilon^{-\alpha/\varepsilon'}(t-t_0))$, $i = 1, 2$, and $t \geq t_0$
[10], [31], [32] Chapter 6). This allows us to determine
the behavior of the trajectories of the original system
near the integral manifold by analyzing the trajectories
of the reduced system (8).

As explained in [10], [29], we can determine
$h(x, t, \varepsilon')$ by exploiting the change of variable $y = y_1/\varepsilon'$
that allows us to re-write (6) in the standard singular
perturbation form:

$$\dot{x} = \bar{X}(x, y, t, \varepsilon'),$$

$$\dot{y} = \bar{Y}(x, y, t, \varepsilon'),$$

in which $\bar{X}(x, y, t, \varepsilon') = C(x, t)y + \varepsilon' - 1 F_1(x, \varepsilon' y, t) +
X(x, \varepsilon' y, t, \varepsilon'),$ $\bar{Y}(x, y, t, \varepsilon') = B(x, t)y +
\varepsilon' - 1 F_2(x, \varepsilon' y, t) + Y(x, \varepsilon' y, t, \varepsilon')$. Since F_i
$i = 1, 2$, satisfy $||F_i(x, y_1, t)|| = O(||y_1||^2)$ in
Ω, then $\varepsilon' - 1 F_i(x, \varepsilon' y, t)$ are well defined as ε'
approaches zero [10]. Then, defining the smooth
isolated root of $\bar{Y}(x, y, t, 0) = 0$ as $y = h_0(x, t)$, it is possible to show that, since conditions C1 -
C3 are satisfied, the eigenvalues λ_i of the matrix
$(\partial \bar{Y} / \partial y)(x, h_0(x, t), 0)$ satisfy the inequality
$\text{Re}(\lambda_i) \leq -2\alpha$, with $\alpha > 0$. Then, the integral
manifold $y = y_1/\varepsilon' = h(x, t, \varepsilon')$ can be calculated
as asymptotic expansion in integer powers of ε',
\(h(x, t, \varepsilon') = h_0(x, t) + \varepsilon' h_1(x, t) + \ldots + \varepsilon^{k} h_k(x, t) + \ldots \), whose coefficients are smooth function with bounded norm [29] and they can be found substituting the expansion in the second equation of (9), obtaining [10]

\[
\varepsilon' \frac{\partial h}{\partial t} + \varepsilon' \frac{\partial h}{\partial x} \tilde{X}(x, h, t, \varepsilon') = \tilde{Y}(x, h, t, \varepsilon'). \tag{10}
\]

B. Application to the histone modification circuit

In order to reduce the system (2), let us first rewrite it by letting \(\varepsilon = \varepsilon' \) and introducing the new time variable \(\tau = \tau \varepsilon' \):

\[
\varepsilon' \frac{dA^A}{d\tau} = (u_{A0} + u_A + \tilde{A}^A) \tilde{D} - \varepsilon' (c + \tilde{D}^R) \tilde{D}^A \\
\varepsilon' \frac{d\tilde{D}^R}{d\tau} = (u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D} - \mu' \varepsilon' (c + \tilde{D}^R) \tilde{D} \\
\varepsilon' \frac{d\tilde{D}}{d\tau} = \varepsilon' [\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A] \\
= -(u_{A0} + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D}.
\tag{11}
\]

Furthermore, let us define \(x, y, f_1 \) and \(f_2 \) as follows:

\[
x = \begin{pmatrix} \tilde{D}^A \\ \tilde{D} \end{pmatrix}, \quad y_2 = \tilde{D}, \\
 f_1 = \begin{pmatrix} (u_{A0} + u_A + \tilde{A}^A) \tilde{D} - \varepsilon' (c + \tilde{D}^R) \tilde{D}^A \\ (u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D} - \mu' \varepsilon' (c + \tilde{D}^R) \tilde{D} \end{pmatrix}, \tag{12}
 f_2 = \varepsilon' [\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A] \\
= -(u_{A0} + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D}.
\]

Now, it is possible to show that \(\phi(x) \), defined in C1, is equal to 0 and that the matrix \(A \) as defined in (4) with \(\tilde{D} = 0 \) and \(\varepsilon' = 0 \) can be written as

\[
\begin{pmatrix}
0 & 0 & (u_A + u_{A0} + \tilde{A}^A) \\
0 & 0 & (u_R + u_{R0} + \alpha \tilde{D}^R) \\
0 & 0 & -(u_A + u_{A0} + \tilde{A}^A + u_R + u_{R0} + \alpha \tilde{D}^R)
\end{pmatrix}.
\tag{13}
\]

The matrix is singular, showing that the system (11) is a singularly perturbed system. More precisely, matrix \(A \) has two zero eigenvalues and two corresponding linearly independent eigenvectors. Furthermore, matrix \(B \) defined in (5) can be written as

\[
B = -(u_A + u_{A0} + \tilde{A}^A + u_R + u_{R0} + \alpha \tilde{D}^R).
\]

When external inputs are not applied \((u_A = u_R = 0) \), \(B \) has always negative real part if \(u_{R0} + u_{A0} \geq l \) with \(l > 0 \). Then, we can apply Theorem 7.1 from [10] to obtain \(\varepsilon' \)-dependent reduced system. Let us first introduce in (11) the change of variable \(\tilde{D} = \tilde{D}/\varepsilon' \), obtaining

\[
\frac{d\tilde{D}^A}{d\tau} = (u_{A0} + u_A + \tilde{A}^A) \tilde{D} - (c + \tilde{D}^R) \tilde{D}^A \\
\frac{d\tilde{D}^R}{d\tau} = (u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D} - \mu (c + \tilde{D}^R) \tilde{D}^R \\
\varepsilon' \frac{d\tilde{D}}{d\tau} = [\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A] \\
= -(u_A + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D}.
\tag{14}
\]

To calculate the slow integral manifold from the last equation of (14), let us first construct the asymptotic expansion of \(\tilde{D} \):

\[
\tilde{D} = h_0(\tilde{D}^A, \tilde{D}^R, \varepsilon') \\
= h_0(\tilde{D}^A, \tilde{D}^R) + \varepsilon' h_1(\tilde{D}^A, \tilde{D}^R) + O(\varepsilon'^2).
\tag{15}
\]

Then, substituting (15) in the last ODE of (14), we obtain

\[
\varepsilon' \frac{d\tilde{D}}{d\tau} = \varepsilon' \left(\frac{\partial h_0}{\partial \tilde{D}^A} \frac{d\tilde{D}^A}{d\tau} - \frac{\partial h_0}{\partial \tilde{D}^R} \frac{d\tilde{D}^R}{d\tau} \right) \\
= [\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A] \\
- (u_A + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R) h.
\tag{16}
\]

To calculate \(h_0 \) and \(h_1 \) we equate the terms on the left-hand side and right-hand side multiplied by the same power of \(\varepsilon' \), obtaining

\[
h_0 = \frac{[\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A]}{(u_{A0} + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R)}, \tag{17}
 h_1 = -\frac{\partial h_0}{\partial \tilde{D}^A}((u_{R0} + u_R + \alpha \tilde{D}^R) h_0 - \mu (c + \tilde{D}^A) h) \\
= \frac{[\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A]}{(u_{A0} + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R)}. \tag{18}
\]

Since \(\frac{\partial h_0}{\partial \tilde{D}^A} \) and \(\frac{\partial h_0}{\partial \tilde{D}^R} \) are bounded (and then \(\varepsilon' \frac{\partial h_0}{\partial \tilde{D}^A}, \varepsilon' \frac{\partial h_0}{\partial \tilde{D}^R} \ll \varepsilon' \) for a sufficiently small \(\varepsilon' \)), if we substitute (17) into (15) we obtain

\[
\tilde{D} = \frac{[\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A]}{(u_{A0} + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R)}.
\tag{19}
\]

Substituting (18) into (14) and re-introducing the original time variable \(\tau = \tau/\varepsilon' \), we finally obtain the reduced system as follows:

\[
\frac{d\tilde{D}^A}{d\tau} = (u_{A0} + u_A + \tilde{A}^A) \tilde{D} - (c + \tilde{D}^R) \tilde{D}^A \\
\frac{d\tilde{D}^R}{d\tau} = (u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D} - \mu (c + \tilde{D}^R) \tilde{D}^R \\
\varepsilon' \frac{d\tilde{D}}{d\tau} = [\mu (c + \tilde{D}^A) \tilde{D}^R + (c + \tilde{D}^R) \tilde{D}^A] \\
= -(u_A + u_A + \tilde{A}^A + u_{R0} + u_R + \alpha \tilde{D}^R) \tilde{D}.
\]
If we sum the ODEs in (19), we obtain \(\frac{d\bar{D}^A}{dt} + \frac{d\bar{D}^R}{dt} = 0 \), that is \(\bar{D}^A + \bar{D}^R = \text{constant} \). In particular, since \(\bar{D}^A + \bar{D}^R + \bar{D} = 1 \) and \(\bar{D} = \epsilon' \bar{D} \approx 0 \) for \(\epsilon' \ll 1 \), we have that \(\bar{D}^A + \bar{D}^R = 1 \) for \(\epsilon' \ll 1 \). We further validated via simulation that system (19) is a proper reduction of the original system (2) when \(\epsilon' \) is small by showing that the trajectories of \(\bar{D}^R \) and \(\bar{D}^A \) of the original and reduced systems become closer as \(\epsilon' \) decreases (Fig. 2).

Multiplying both sides by \(D_{\text{tot}}(k_{W}^A D_{\text{tot}}) \) and defining \(\bar{k}_W^A = k_{W}^A 0 + k_{W}^A \) and \(\bar{k}_R^W = k_{R}^{W0} + k_{R}^{W} \), system (19) can be rewritten in a dimensional form:

\[
\begin{align*}
\bar{D}^A &= \left(\frac{(k_F^A + k_M^A D^A)(\delta + k_E^A + k_F^A D^A)}{(k_F^A + k_M^A D^A) + (k_F^A + k_M^A D^R)} \right) D^R + \left(\frac{(k_F^A + k_M^A D^R)(\delta + k_E^A + k_F^A D^R)}{(k_F^A + k_M^A D^R) + (k_F^A + k_M^A D^A)} \right) D^A \\
\bar{D}^R &= \left(\frac{(k_F^R + k_M^R D^R)(\delta + k_E^A + k_F^A D^R)}{(k_F^R + k_M^R D^R) + (k_F^R + k_M^R D^A)} \right) D^A + \left(\frac{(k_F^R + k_M^R D^A)(\delta + k_E^A + k_F^A D^A)}{(k_F^R + k_M^R D^A) + (k_F^R + k_M^R D^R)} \right) D^R.
\end{align*}
\]

The system is one-dimensional (\(D^R + D^A = D_{\text{tot}} \)) and it can be represented through the following simplified chemical reactions:

\[
D^A \xrightarrow{k_{AR}} D^R, \quad D^R \xrightarrow{k_{RA}} D^A \tag{21}
\]

with reaction rate coefficients defined as

\[
\begin{align*}
k_{AR} &= \left(\frac{(k_F^A + k_M^A D^R)(\delta + k_E^A + k_F^A D^R)}{(k_F^A + k_M^A D^A) + (k_F^A + k_M^A D^R)} \right), \\
k_{RA} &= \left(\frac{(k_F^R + k_M^R D^A)(\delta + k_E^A + k_F^A D^A)}{(k_F^R + k_M^R D^A) + (k_F^R + k_M^R D^R)} \right). \tag{22}
\end{align*}
\]

A diagram of the circuit is shown in Fig. 3.

IV. Stochastic Analysis

The reduced chemical reaction system (21) can be represented by a one-dimensional Markov chain in which the state \(x \) represents the number of \(D^R \), that is, \(x = n_{D^R} \) with \(x \in [0, D_{\text{tot}}] \). Furthermore, given a generic state \(x \), the rate associated to the transition from \(x \) to \(x + 1 \), \(\alpha(x) \), and the rate associated to the transition from \(x \) to \(x - 1 \), \(\gamma(x) \), can be written as

\[
\begin{align*}
\alpha_x &= \left(\frac{\tilde{\alpha} \bar{u}^R + \bar{u}^A x \varepsilon + \varepsilon' \frac{D_{\text{tot}}}{2 \bar{u}^A}}{\left(\bar{u}^A + \left(\frac{D_{\text{tot}}}{2 \bar{u}^A} \right) \right)} \right) (D_{\text{tot}} - x), \\
\gamma_x &= \left(\frac{\tilde{\alpha} \bar{u}^R + \bar{u}^A x \varepsilon + \varepsilon' \frac{D_{\text{tot}}}{2 \bar{u}^A}}{\left(\bar{u}^A + \left(\frac{D_{\text{tot}}}{2 \bar{u}^A} \right) \right)} \right) x. \tag{23}
\end{align*}
\]

Now, we want to determine how the circuit parameters affect the duration of the memory of chromatin states. Let us first analytically evaluate the stationary probability distribution \(\pi(x) \). Since this Markov chain is irreducible and reversible, we can obtain an analytical expression for \(\pi(x) \) by applying detailed balance [11]. In particular, for our one-dimensional Markov chain, the detailed balance principle allows us to write the stationary distribution \(\pi(x) \) as

\[
\pi(x) = \prod_{i=1}^{x} \frac{\alpha_{x-i}}{\gamma_{x-i}} \pi(0) = \frac{\prod_{i=1}^{x} \alpha_{x-i}}{\left(1 + \sum_{j=1}^{D_{\text{tot}}} \prod_{i=1}^{x} \alpha_{x-i-j} \right)} \tag{24}
\]

for any \(x \in [1, D_{\text{tot}}] \). Since \(\prod_{i=1}^{x} \alpha_{x-i} = O(\varepsilon) \) for any \(x \geq 1 \) except for \(x = D_{\text{tot}} \), for \(\varepsilon \to 0 \) the stationary probability distribution \(\pi(x) \) can be approximated by

\[
\lim_{\varepsilon \to 0} \pi(x) = \pi_0(x) = \begin{cases}
\frac{1}{\mu} & \text{if } x = 0 \\
\frac{p}{\mu} & \text{if } x \neq 0, D_{\text{tot}} \\
\frac{p}{\mu} & \text{if } x = D_{\text{tot}}
\end{cases} \tag{25}
\]

with

\[
P = \left(\frac{\bar{u}_A + \bar{u}_R + \alpha_0 \bar{u}_R}{\bar{u}_A + \bar{u}_R + 1} \right) \prod_{i=1}^{D_{\text{tot}}-1} \left(\frac{\bar{u}_R + \alpha_0}{\bar{u}_A + \frac{1}{\mu} D_{\text{tot}}} \right) \left(\frac{1}{\mu} \right)^{D_{\text{tot}}} \tag{26}
\]

in which \(\bar{u}_A = u_{A0} + u_A, \bar{u}_R = u_{R0} + u_R \). From (25), we note that as \(\varepsilon \) tends to zero, \(\pi(x) \to 0 \) for all \(x \) except for \(x = D_{\text{tot}} \) (fully repressed chromatin state) and \(x = 0 \) (fully active chromatin state), that is, the distribution has two modes in correspondence of \(x = 0 \) and \(x = D_{\text{tot}} \).
and \(x = D_{\text{tot}} \), and the probability of having the system in the intermediate states tends to zero (Fig. 4). This suggests that when \(\varepsilon \to 0 \), a system starting at \(x = D_{\text{tot}} \) or at \(x = 0 \) will remain at that state. Qualitatively, this indicates that \(\varepsilon \) small allows to keep the memory of the repressed or active chromatin state for very long time, suggesting that \(\varepsilon \) controls ECM.

In order to make this statement mathematically precise, we evaluate how the system parameters affect the temporal duration of the memory of the fully repressed (\(x = D_{\text{tot}} \)) and fully active (\(x = 0 \)) chromatin states. More precisely, defining the hitting time of \(x = j \) starting from \(x = i \) as \(t_j^i := \inf\{ t \geq 0 : x(t) = j \) with \(x(0) = i \} \) with \(i, j \in [0, D_{\text{tot}}] \), the time to memory loss of the fully repressed chromatin state can be defined as \(\tau^0_{D_{\text{tot}}} = \mathbb{E}(t^0_{D_{\text{tot}}}) \). Similarly, we can define the time to memory loss of the active state as the expected value of the first time at which the \(x = D_{\text{tot}} \), starting from \(x = 0 \), that is \(\tau^0_{D_{\text{tot}}} = \mathbb{E}(t^0_{D_{\text{tot}}}) \). In order to compute \(\tau^0_{D_{\text{tot}}} \) and \(\tau^0_{D_{\text{tot}}} \), we use first step analysis [12]. Given the definition of \(\alpha_x \) and \(\gamma_x \) in (23), the time to memory loss of the repressed chromatin state, \(\tau^0_{D_{\text{tot}}} \), can be written as follows:

\[
\tau^0_{D_{\text{tot}}} = \frac{F_{D_{\text{tot}}}^{-1}}{\gamma_{D_{\text{tot}}}} \left(1 + \sum_{x=1}^{D_{\text{tot}}} \frac{1}{r_x} \right) + \frac{1}{\gamma_1} \sum_{x=2}^{D_{\text{tot}}-1} \left(\frac{r_x}{\gamma_x} \left(1 + \sum_{j=1}^{x-1} \frac{1}{r_j} \right) \right),
\]

(27)

with \(r_x = \frac{\alpha_1 \alpha_2 \ldots \alpha_x}{\gamma_1 \gamma_2 \ldots \gamma_x} \). Assuming \(\varepsilon' \neq 0 \), the dominant term of \(\tau^0_{D_{\text{tot}}} \) for \(\varepsilon \ll 1 \) is the first addend in (27). Then, by normalizing the time to memory loss with respect \(k_{\text{tot}}^{A} D_{\text{tot}}^{-1} \left(\tau^0_{D_{\text{tot}}} = \frac{\tau^0_{D_{\text{tot}}}}{k_{\text{tot}}^{A}} \right) \), the normalized \(\tau^0_{D_{\text{tot}}} \) in the regime \(\varepsilon \ll 1 \) can be approximated as follows:

\[
\bar{\tau}^0_{D_{\text{tot}}} \approx \frac{K_A}{\varepsilon} \left(1 + \sum_{x=1}^{D_{\text{tot}}-1} \frac{h_x^A(\mu)}{K_A^x} \right),
\]

(28)

where \(h_x^A \) an increasing function, \(h_x^A(0) = 0 \) and \(K_A \) and \(K_A^x \) functions independent of \(\varepsilon \) and \(\mu \). In a similar way, we can determine the time to memory loss of the active gene state, \(\tau^0_{D_{\text{tot}}} \), that can be written as follows:

\[
\tau^0_{D_{\text{tot}}} = \frac{F_{D_{\text{tot}}}^{-1}}{\alpha_0} \left(1 + \sum_{x=1}^{D_{\text{tot}}-1} \frac{1}{r_x} \right) + \frac{1}{\alpha_{D_{\text{tot}}}} \sum_{x=2}^{D_{\text{tot}}-1} \left(\frac{r_x}{\gamma_x} \left(1 + \sum_{j=1}^{x-1} \frac{1}{r_j} \right) \right),
\]

(29)

with \(r_x = \frac{\alpha_0 \alpha_1 \ldots \alpha_x}{\gamma_0 \gamma_1 \ldots \gamma_x} \). Also in this case, assuming that \(\varepsilon' \neq 0 \), the dominant term of \(\tau^0_{D_{\text{tot}}} \) for \(\varepsilon \ll 1 \) is the first addend in (29). Then, by normalizing the time to memory loss with respect \(k_{\text{tot}}^{A} D_{\text{tot}}^{-1} \left(\tau^0_{D_{\text{tot}}} = \frac{\tau^0_{D_{\text{tot}}}}{k_{\text{tot}}^{A}} \right) \), the normalized \(\tau^0_{D_{\text{tot}}} \) in the regime \(\varepsilon \ll 1 \) can be approximated as follows:

\[
\bar{\tau}^0_{D_{\text{tot}}} \approx \frac{K_A}{\varepsilon} \left(1 + \sum_{x=1}^{D_{\text{tot}}-1} \frac{h_x^A(\mu)}{K_A^x} \right),
\]

(30)

with \(h_x^A \) an increasing function, \(h_x^A(0) = 0 \) and \(K_A \) and \(K_A^x \) functions independent of \(\varepsilon \) and \(\mu \). In the limiting condition \(\varepsilon \to 0 \), we have that both \(\bar{\tau}^0_{D_{\text{tot}}} \) and \(\bar{\tau}^0_{D_{\text{tot}}} \)
tend to infinity. Therefore, a lower ε is the driver of longer lasting memory of both the active and repressed chromatin states (Fig. 5).

Now, let us also determine how μ, the non-dimensional parameter quantifying the asymmetry between the erasure rates of repressive and activating modifications, affects the ECM. From the expression of the stationary distribution in (25), it is possible to notice that if μ is decreased, $\pi_0(D_{tot})$ increases to the detriment of $\pi_0(0)$, that is the stationary distribution is biased towards the repressed state (Fig. 4). In accordance with this result, a lower μ leads to higher $\tau^D_{D_{tot}}$ but to lower $\tau^R_{D_{tot}}$.

To validate the trends of the stationary probability distribution and of the time to memory loss with ε and μ, we conducted a computational study of the original system in reactions of Fig. 1(a) by using the Stochastic Simulation Algorithm (SSA) [13] (Fig. 6). The trend with which ε and μ affect the stationary distribution is in accordance with what we determine by studying the analytical expressions of $\pi(x)$ (24) (Fig. 6(a)). Furthermore, the time trajectories in Fig. 6(b) show less frequent transitions between the active and repressed chromatin states for lower values of ε, in agreement with the mathematical expression of the time to memory loss expressions (28),(30).

V. CONCLUSION

In this work, a ubiquitous circuit motif among histone modifications [9] has been considered. In order to study the extent of memory of the active and repressed chromatin states, a time scale separation between erasure reactions and autocatalytic reactions has been exploited to obtain a one-dimensional reduced model. This allowed us to analytically determine the stationary distribution of the system, an expression for the time to memory loss, and to analyze how the circuit parameters affect them. Concerning the stationary distribution, the analysis shows two concentrated peaks in the active and repressed chromatin states for a sufficiently small ε.

Fig. 6: Stochastic simulations of the histone modification circuit in Fig. 1(a) using SSA. (a) The stationary distribution for the histone modification circuit whose reactions are listed in Fig. 1(a). The parameter values are in Table II. In particular, in the left-side plots $\varepsilon = 0.18, 0.1$, $\mu = 1, 0.8$ and $\varepsilon' = 0.4$ and in the right-side plots $\varepsilon = 0.23, 0.1$, $\mu = 1, 0.8$ and $\varepsilon' = 1$. In all plots n_{DA} and n_{DR} represent the number of nucleosomes with active histone marks and repressive histone marks, respectively. (b) Time trajectories of n_{DA} and n_{DR} starting from the fully active state $n_{DA} = 50$, $n_{DR} = 0$ for different values of ε and ε'. The time is normalized ($\tau = t \frac{\alpha}{D_{tot}}$, with Ω the reaction volume) and the parameter values are in Table II.

TABLE I: Parameter values relative to the plots in Fig.4.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Value (h$^{-1}$)</th>
<th>Value (h$^{-1}$)</th>
<th>Value (h$^{-1}$)</th>
<th>Value (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{A0}</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>k_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k_{A0}</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>k_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k_{DR}/Ω</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>4.32.5</td>
<td>5.72.5</td>
<td>4.32.5</td>
<td>5.72.5</td>
</tr>
<tr>
<td>k_{D}</td>
<td>4.32.5</td>
<td>5.72.5</td>
<td>4.32.5</td>
<td>5.72.5</td>
</tr>
<tr>
<td>k_{D}/Ω</td>
<td>0.4</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>k_{D}/Ω</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>15.0,15.0,0.015</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>ε</td>
<td>ε'</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II: Parameter values relative to the plots in Fig.6.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Value (h$^{-1}$)</th>
<th>Value (h$^{-1}$)</th>
<th>Value (h$^{-1}$)</th>
<th>Value (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{A0}</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_A</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_{R0}</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_R</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>ε'</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>1</td>
<td>1, 0.8, 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{tot}</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Furthermore, the height of the peaks depends on the value of μ. These results are consistent with the analysis of the time to memory loss, which shows longer memory of the active and repressed states for smaller values of ε. Furthermore, a lower value of μ increases the memory of the repressed state, while decreases the memory of the active state. These results are in agreement with the simulations conducted for the original reaction system (Fig. 1(a)) with the SSA. Future work will investigate the stochastic behavior of the chromatin modification circuit that includes also DNA methylation.

REFERENCES