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Abstract

Synthetic biology has the potential to bring forth advanced genetic devices for applications in healthcare and

biotechnology. However, accurately predicting the behavior of engineered genetic devices remains difficult due to

lack of modularity, wherein a device’s output does not depend only on its intended inputs but also on its context.

One contributor to lack of modularity is loading of transcriptional and translational resources, which can induce

coupling among otherwise independently-regulated genes. Here, we quantify the effects of resource loading in

engineered mammalian genetic systems and develop an endoribonuclease-based feedforward controller that can

adapt the expression level of a gene of interest to significant resource loading in mammalian cells. Near-perfect

adaptation to resource loads is facilitated by high production and catalytic rates of the endoribonuclease. Our design

is portable across cell lines and enables predictable tuning of controller function. Ultimately, our controller is a

general-purpose device for predictable, robust, and context-independent control of gene expression.
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Introduction

A promising strategy for engineering complex genetic devices is to compose together simpler systems that have

been characterized in isolation1–4. A critical assumption of this modular design approach is that subsystems maintain

their input/output (i/o) behavior when assembled into larger systems. However, this assumption often fails due to

context dependence, i.e., the behavior of a module depends on the surrounding systems2,5. There are many sources of

context-dependence, including unexpected off-target interactions between regulators and their targets6–8, transcription

factor (TF) loading by DNA targets9,10, gene orientation11, and resource loading by expressed genes12,13. To date,

much effort has gone into identifying and engineering gene regulators with unique binding specificity, e.g. between

TFs and their DNA binding sites, with the goal of finding gene regulators that work orthogonally7,14–18. Nevertheless,

even if subsystems are entirely composed of putatively orthogonal regulators, their gene expression levels can still

become coupled to each other via competition for shared cellular resources2,12,13,19,20. For example, it has been

demonstrated in prokaryotes that genes compete for ribosomes, such that increased expression from one gene

decreases expression from others by sequestering, i.e. loading, ribosomes12,13. In mammalian cells, several types of

cellular resources not present in prokaryotes are shared among expressed genes and can be overloaded, including

transcription coactivator proteins (CoAs) and general TFs (GTFs) needed for transcription21, splicing factors22,

miRNA processing factors23, RISC complexes24,25, and the proteasome26.

In particular, eukaryotic transcriptional activators (TAs) are known to apply a load to transcriptional resources by

sequestering CoAs and/or GTFs from other genes, a phenomenon referred to as squelching27–35. This resource

loading leads to a drop in the expression level of other genes, resulting in coupling between independently expressed

genes and more generally to context-dependent gene expression. Moreover, squelching can be toxic to cells34,36–38

and places a selective pressure against engineered circuits and host cell, thus affecting both on evolutionary

timelines39,40. As many established synthetic eukaryotic gene regulation systems utilize TAs14,17,41–44, squelching is

potentially a pervasive problem in eukaryotic synthetic biology. Thus, we focus on characterizing the effects of

resource loading by TAs and develop an engineering solution to make the expression level of a gene of interest (GOI)

robust to resource loading.

We first establish an experimental model system to comprehensively quantify the effects of resource loading by

different TAs on various human- and viral-derived constitutive promoters driving a GOI in different cell lines. From

this characterization, we find that resource loading by the TAs substantially affects expression levels of the GOI in

nearly all combinations of promoters, TAs, and cell lines tested. To provide a mechanistic understanding of the trends

observed in the data, we build a mathematical model of eukaryotic gene expression which accounts for resource

loading, including squelching by TAs. To solve the resource loading problem in mammalian cells, we introduce a

feedforward controller design based on enzymatic regulation of the GOI to make its expression level robust to
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resource loading (Figure 1a-d). Through a mechanistic model, we elucidate that the controller’s ability to rescue the

expression of the GOI back to the unperturbed level relies on fast catalytic and production rates of the regulating

enzyme. Based on these design requirements, we chose the Cas6-family endoribonuclease (endoRNase) CasE45,46

(EcoCas6e), as the regulating enzyme. In our design, CasE cleaves a 20 nt target site in the 5’ untranslated region

(UTR) of the output mRNA, preventing translation. In a number of different cell lines and in response to resource

loading by a variety of TAs, our controller can maintain the desired expression level of the GOI, thereby

demonstrating near-perfect adaptation of ectopic gene expression levels to resource loading in mammalian cells. Our

controller thus represents a significant step towards engineering genetic systems in mammalian cells that function

reliably regardless of their cellular context.

Results

Characterization of transcriptional resource sharing

We first quantified the effect of resource sharing on the output levels of genetic devices. Specifically, we define a

genetic device as an engineered gene that may take regulatory inputs (e.g. sequence-specific TFs) and gives the

gene’s expressed protein as output. We further define a genetic module as one or more genetic devices that are linked

together by direct regulatory interactions. Independently-regulated devices in separate modules can become

implicitly coupled through competition for shared gene expression resources: expression of a gene in one device

‘loads’ the pool of shared resources, thereby decreasing resource availability to other devices in all modules (Figure

1a). Because of this coupling, the behavior of a genetic device or module becomes dependent on the presence of

devices in other modules in the cell.

We recapitulated resource sharing in mammalian cells using the genetic model system shown in Figure 1e. The

Gal4 DNA-binding domain (DBD) was fused to one of several activation domains (ADs) of varying potency

(Supplementary Figure ??), the strongest five of which were chosen for in-depth study: HSV-1 VP1647, VP6448,

NF-� B p6549, EBV Rta50, and the tripartite VP64-p65-Rta (VPR51). Our model system comprises two genetic

modules (Figure 1e). Module 1 comprises a device for constitutive expression (CMV:Output1). Module 2 comprises

two devices: Gal4 TA expression (hEF1a:Gal4-{AD}) and Gal4-driven activation: UAS:Output2. The Output and

Marker proteins are fluorescent reporters that we measured by flow cytometry. Typically, transfection markers (TX

Markers) are used for normalization of signals measured in transfection experiments; however, such markers can

become unreliable due to being affected by resource loading33,35. To minimize the impact of resource loading on the

accuracy of measurements, we thus measured reporter outputs as the median of cells gated positive for either the

reporter or the TX Marker (see Supplementary Note ?? for further discussion of gating strategies). To enable
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conversion of Gal4 levels to fluorescence values, we co-titrated a reporter (Gal4 Marker) with the Gal4 TAs. Details

about plasmid dosages and transfection reagents used in each experiment are provided in Source Data.

The resulting dose-response curves for activation of UAS:Output2 and knockdown of CMV:Output1 via resource

loading are shown in Supplementary Figure ?? and Figure 1f, respectively (see also Supplementary Figure ?? for the

corresponding distributions of expression levels). At the highest dosage tested, all five Gal4 TAs knocked down

CMV:Output1 by at least 30%, with Gal4-VPR causing nearly 80% knockdown (Figure 1f). Additional qPCR and

flow cytometry measurements validated that the effect of Gal4 TAs on CMV-driven expression is caused by the ADs

and occurs predominantly at the transcriptional level (Supplementary Figure ??). Consistent with prior studies29,31,

the activation dose-response curve of some Gal4 TAs (Gal4-Rta, Gal4-p65, and Gal4-VPR) showed decreasing

UAS:Output2 at high dosages of the TAs, presumably due to self-squelching (Supplementary Figure ??a-c).

We developed a mathematical model of gene expression that accounts for transcriptional and translational

resources shared among genes (described in detail in Supplementary Note ?? and Supplementary Figure ??). This

model recapitulates the trends of both non-target gene knockdown (Figure 1f) and on-target self-squelching by TAs

observed in the experiments (Supplementary Figure ??b). For further discussion of model fitting and validation, see

Supplementary Note ?? and Supplementary Figures ??-??. Importantly, the qualitative trends displayed by the model

were also predictive of circuit behavior in lentiviral-integrated contexts (Supplementary Figures ?? & ??), indicating

that the qualitative effect of resource loading by TAs, i.e., decrease in the expression of non-TA target genes, apply to

genes located in both plasmids and chromosomes (for further discussion, see Supplementary Note ??).

To determine how resource loading affects different constitutive promoters and whether the cellular host

modulates these effects, we carried out the experiment shown in Figure 2a & Supplementary Figure ??. In particular,

we extended our model system from Figure 1e to test the effect of different Gal4 TAs on a library of non-target

constitutive promoters in Module 1 ({P}:Output1 – see Supplementary Table ?? for more details) when transfected

into various commonly-used cell lines. Figure 2b shows the nominal expression levels (i.e. the median expression

level in the absence of resource loading, measured in this experiment using samples co-transfected with the Gal4

DBD (no AD) – see Methods) of {P}:Output1 in Module 1 for each constitutive promoter in each cell line tested. We

then computed fold-changes in response to each Gal4 TA by normalizing the median expression level of {P}:Output1

in each combination of constitutive promoter, TA, cell line to the nominal expression level of the same constitutive

promoter in the given cell line and in the absence of the TA (Figure 2c).

From the {P}:Output1 fold-changes, we can extract patterns that help guide design choices for genetic circuits.

Decreased expression of {P}:Output1 was observed in the majority of combinations, with viral promoters being

generally more negatively affected by resource loading than human promoters (see also Supplementary Figure ??).

While the relative effects of Gal4 TAs on each constitutive promoter were reasonably correlated between cell lines

(0.5 < r < 0.9), the exact fold-changes were poorly predictable between one cell line and another (Supplementary
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Figure ??). The differences among cell lines may result from the promoters utilizing distinct subsets of transcriptional

resources52–55 that are differentially loaded by each TA and differentially expressed within each cell line. We observed

appreciable increases in output for three of the twelve promoters tested (hUBC, hMDM2, and hMDM2c – Figure 2c).

Several of the TAs including Gal4-Rta, -p65, and -VPR were observed to cause reductions in cell division rate as

measured by Ki-67 staining (Supplementary Figure ??). Accounting for changes in growth rates in simulations, along

with analysis of cell density in the experimental data, suggest that decreases in cell division rate due to toxicity of the

TAs may explain the increase in expression of hUBC and hMDM2c promoters (see Supplementary Note ?? &

Supplementary Figures ??-??). However, the increase in output expression for the full-length hMDM2 promoter

appears to be Gal4-specific and not correlated with changes in cell density (Supplementary Figures ??-??). The

presence of two consensus Gal4 binding sites in the hMDM2 promoter sequence (see sequence in Source Data)

suggests that Gal4 TAs can bind and activate transcription of hMDM2 (Supplementary Note ??).

While we saw widespread reductions and in some cases increases in {P}:Output1 in response to the Gal4 TAs,

there were some combinations of promoters and Gal4 TAs in each cell line that had little to no effect. The five

promoter-TA combinations with either the strongest knockdown of or least effect on Output1 are reported in Figure

2d (see Supplementary Figure ?? for all combinations). In particular, the hUBC and hPGK promoter variants were

frequently found to be unaffected by the Gal4 TAs. However, individual combinations of constitutive promoters and

Gal4 TAs that are relatively uncoupled in one cell line are not generally uncoupled in different cell lines. Only three

combinations that showed the least coupling in one cell line (VP64/hEF1a, VP64/hUBCs, and p65/hUBCs) were

shared among at least two different cell lines. Therefore, while in individual cell lines it is possible to find

combinations of genetic parts that result in reduced coupling due to resource sharing, a general method that is

agnostic of the specific genetic parts used and is applicable to any given cell lines is needed to decouple gene

expression from competition for shared resources.

Design of an endoRNase-based feedforward controller

In order to mitigate the effect of resource loading on any genetic module’s output, we designed a

resource-decoupled genetic module by augmenting Module 1 with a feedforward controller (Figure 1b). The

feedforward path of the controller is obtained by expressing an endoRNase that targets the output protein’s mRNA

for degradation. The promoter expressing the endoRNase is identical to that expressing the output, ensuring that

expression of both genes depends on the same transcriptional and translational resources. This controller architecture

leads to an incoherent feedforward loop (iFFL) motif (Figure 1c). Qualitatively, with reference to Figure 3a, as the

availability of transcriptional or translational resources (R) decreases, such as due to loading by TAs, the level of the

endoRNase (x) also decreases, de-repressing the output protein (y). If the system is properly designed, this action

5



should compensate for the decrease in output production caused by a decrease in available resources, thus enabling

the level of the output protein to remain unchanged for a range of perturbations in the resource amount R.

The extent to which the output level remains unchanged (i.e. the robustness of the iFFL design) is dependent on a

number of biochemical parameters. To extract the key tunable parameters dictating the robustness of this iFFL

design, we use a mathematical model based on mass-action kinetics (see Methods and Supplementary Note ?? for

derivation). According to this model, the steady-state output protein level y of the iFFL is given by:

y = Vy ·
D · R

1 + D · R=�
; (1)

where R := RTX · RTL lumps together the free concentrations of transcriptional (RTX) and translational (RTL)

resources, and D is the concentration of the DNA plasmid that encodes both the output and the endoRNase. The

lumped parameters Vy and � are defined as

Vy :=
’ y� y


 yk� y� y
; and � :=


 xk� x� yKM

’ x� x�
· � x; (2)

where, for i =x (endoRNase) or i =y (output), ’ i is the transcription initiation rate constant; � i is the decay rate

constant of the mRNA transcript mi; 
 i is the decay rate constant of protein i; � i is the translation initiation rate

constant; and � i is the dissociation constant describing the binding between translational resource (i.e., ribosome) and

the mRNA transcript mi, and thus governs translation initiation. The parameter � is the catalytic rate constant of the

endoRNase cleaving my, KM is the Michaelis-Menten constant describing the binding of the endoRNase with my, and

k is the dissociation constant describing binding of transcriptional resource with the two identical promoters driving

the expression of both endoRNase x and output y. Overall, changing the biochemical parameters governing the

production, decay, and enzymatic reactions of the endoRNase only changes the lumped parameter � , while the

lumped parameter Vy is entirely determined by biochemical parameters of the output gene. The derivation of (1) is

independent of the resource sharing model developed in Supplementary Note ?? and is only based on the assumption

that the endoRNase (x) and the output protein (y) are using the same pool of resources for transcription and

translation (Supplementary Note ??). According to (1), if D · R � � , then y ≈ Ymax := Vy · � , which is independent of

R and therefore independent of the free concentrations of both transcriptional and translational resources. We call the

lumped parameter � feedforward impedance, because as � → 0, the condition D · R � � can be more easily satisfied

(i.e. it is satisfied for a wider range of D · R). As a consequence, the feedforward control action exactly cancels out

the effect of a change in resource availability (R) on the output, although with the trade-off of a lower output level

Ymax (Figure 3b). The experimentally-quantifiable value Z50 = Vz · � is the TX marker (z) level above which the

output is at least 50% of Ymax. Z50 can thus be regarded as an inverse measure of the iFFL’s robustness to changes in
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resource availability (Figure 3a-b).

To achieve a system with low feedforward impedance, we implemented the controller with Cas6-family CRISPR

endoRNases46. These endoRNases bind to and cleave specific ∼20-30 bp-long hairpins in RNA sequences

(independent of guide RNAs), yielding between ∼50-fold and 250-fold knockdown of target proteins46, indicating a

high catalytic rate � to reduce � according to (2). Of these, we chose CasE45, one of the endoRNases with the highest

gene knockdowns that we have evaluated46. We placed the target site for CasE in the 5’ UTR of the output gene’s

transcript because Cas6-family endoRNases more strongly knock down gene expression when targeting the 5’ UTR

than when targeting the 3’ UTR46,56. To construct a library of CasE iFFLs with different feedforward impedance (� ),

we placed variable numbers of upstream open reading frames (uORFs)57 in the 5’ UTR of the CasE transcription

unit, thereby varying the translation rate of CasE (Figure 3c). This method of tuning the feedforward impedance, as

opposed to using different-strength promoters, allows the promoters driving CasE and the output to be identical,

ensuring that both genes use the same pool of transcriptional resources. In this scheme, increasing the number of

uORFs (n) effectively increases the dissociation constant � x between the ribosome and mx
57 to decrease � (Figure 3c).

We experimentally verified this model prediction for n = 0; 1; 2; 4; 8; and 12. Regardless of the number of uORFs,

the shapes of the experimentally measured TX Marker vs output dose response curves match our model well (see

Figure 3d for select samples). Variants of the iFFL with fewer uORFs yield a smaller fit value of Z50, suggesting that

they will be more robust to changes in R (Figure 3d-e). Furthermore, our model predicts that Z50 and Ymax are both

proportional to � and, hence, � x (Figure 3b). Indeed, the fit values of both Z50 and Ymax are linear to the expected

changes in � x based on values from Gam et al.44 (Figure 3e). This implies that the number of uORFs placed on 5’

UTR of the CasE transcript can quantitatively shape the input/output response of the iFFL.

The iFFL output adapts to resource loading

In our genetic implementation of the iFFL, we used the CMVi promoter to drive the expression of both CasE and

the output (Figure 4a). We chose the CMVi promoter because it is strongly knocked down by Gal4 TAs across cell

lines (Figure 2), thus providing an ideal test-bed for assessing the controller performance. To evaluate the benefit of

the iFFL design, we made an unregulated (UR) variant of Module 1 (Figure 4a) that replaces CasE with the

luminescent protein Fluc2, thus breaking the feedforward path. To measure the response of the iFFL and UR modules

to resource loading, we co-transfected plasmids encoding variants of them along with plasmids expressing a TX

Marker and hEF1a:Gal4-VPR into HEK-293FT cells. To account for differences in protein expression levels between

the UR and iFFL modules, we transfected cells with equimolar, 1:4, 1:16, or 1:64 dilutions of the UR plasmid relative

to the amount of iFFL plasmid used for iFFL variants.

As predicted by the model, our experimental results show that variants of the iFFL with fewer uORFs are more

7



robust to changes in resource availability (Figure 4b-c & Supplementary Figure ??). Fold-changes and robustness

scores were computed relative to the samples without Gal4-VPR for each UR and iFFL device independently (see

Methods); the maximum robustness score is 100%. At the highest dosage of Gal4-VPR tested (30 ng), the output of

the UR samples decreased between 2- and 3-fold, whereas the iFFL variants with 4x or 2x uORFs were nearly

unaffected (Figure 4b). In terms of robustness scores, most UR samples had a score of ∼30-50% regardless of the

nominal output level, whereas iFFL variants with 4x or 2x uORFs had a score of ∼ 70-90% (Figure 4c). iFFL variants

with increasing numbers of uORFs (up to 12x) have robustness scores that approach those of the UR samples. To

ensure that the superior performance of iFFL variants with fewer uORFs did not result from reduced sensitivity to

measuring lower output levels, we directly compared UR and iFFL variants with similar nominal output levels (1:64

diluted and 4x uORFs, respectively). Whereas the UR/64 output decreases by ∼60% and its distribution clearly shifts

down in response to resource loading by Gal4-VPR, the iFFL output is nearly unchanged and its distribution retains

approximately the same median with comparable variance (Figure 4d-e). Overall, these data validate the model

prediction that decreasing � increases robustness to resource loading, but has a trade-off in reducing the output level.

According to the model of our iFFL, Ymax = Vy� ; thus, in order to increase the iFFL output level without changing

robustness (� ), we can increase Vy. This can be achieved by increasing the transcription or translation rates or by

decreasing the decay rate of the output protein. To validate this prediction, we measured the iFFL output at various

ratios of CasE and output plasmids using poly-transfection44. Indeed, increasing the output DNA dosage (and thus

transcription rate) relative to that of CasE increases the fit value of Ymax while maintaining an approximately constant

fit value of Z50 (Supplementary Figure ??).

We next tested whether the iFFL module functions in other cell lines and whether its output expression is robust to

resource loading by different Gal4 TAs (Figure 5a & Supplementary Figure ??). In these experiments, we added

higher dosages of Gal4 TAs than in Figure 4 to challenge the iFFL with high loading conditions (see Source Data for

transfection tables). Overall, we found that fold-changes in output of the iFFLs in response to resource loading are

much lower than those in comparable UR systems for nearly all combinations of Gal4 TAs and cell lines tested

(Figure 5b-c & Supplementary Figures ??-??). Directly comparing UR and iFFL variants with similar nominal output

levels (UR/10 vs 8xU-CasE and UR/100 vs 4xU-CasE) in each cell line, we observed that the iFFL is able to maintain

the desired output level even when the UR output is strongly reduced (Figure 5d). Specifically, in situations where the

UR device’s output was affected by more than 30% (−0:5log2 Fold-∆ Output1), the iFFL device’s output was

typically unaffected and rarely affected to the same degree. Moreover, in combinations where the output of the UR

device was highly affected (up to 70% in HeLa and U2OS), that of the iFFL was only slightly affected (unappreciable

change in the 4xU variant and less than 30% in the 8xU variant with larger � and higher output). Across cell lines, the

iFFL variants nearly always have higher robustness scores than the UR variants (Supplementary Figure ??a-d). Most

strikingly, the percent of samples with robustness scores over 80% in HeLa, CHO-K1, and U2OS cells increased
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from 31%, 8.9%, and 20% for UR variants to 100%, 84%, and 93% for iFFL variants, respectively (Supplementary

Figure ??e). Thus, even in cell lines in which unregulated genetic devices exhibit high sensitivity to resource loading

(Figure 2), our iFFL design can substantially reduce the effects of resource loading on gene expression.

To ensure that our results were not specific to the CMVi promoter, we repeated the experiments above using a

version of the iFFL that replaces the CMVi promoters with the hEF1a promoter (Supplementary Figures ??-??). As

in the CMVi iFFL, variants of the hEF1a iFFL with fewer uORFs/lower output generally showed reduced

fold-changes and higher robustness scores in response to Gal4 TAs than UR variants with comparable nominal

outputs (Supplementary Figures ?? & ??). Compared to the CMVi iFFL, the hEF1a iFFL generally showed higher

fold-changes and lower robustness scores, especially in U2OS and HeLa cells co-transfected with Gal4-Rta

(Supplementary Figure ??-??). For hEF1a iFFL variants with 4x or fewer uORFs, the output level was increased by

the Gal4 TAs in HEK-293 and HEK-293FT cells. This increase can be attributed to toxicity of the Gal4 TAs that can

be lessened by using a less toxic transfection reagent (see Supplementary Note ?? & Supplementary Figures ??-??).

Notably, for both the CMVi and hEF1a iFFLs, the nominal output levels for variants with different numbers of

uORFs were highly correlated across cell lines (Supplementary Figures ?? & ??), suggesting that the iFFL also

generally mitigates the effects of contextual differences between cell lines, such as the overall abundance of gene

expression resources.

The iFFL output adapts to plasmid DNA copy number variation

Following from previous work with miRNA- and TR-based iFFLs58–60 and from the model of our

endoRNase-based iFFL design (Figure 3), we predicted that the output level of our iFFL module would also be robust

to variation in its DNA copy number (see Methods). We thus tested whether, absent resource loading, output

expression of the hEF1a iFFL could adapt to the multiple log decades of variation in plasmid uptake between

individual cells seen in transient transfections (Figure 6a). As the level of a TX Marker is proportional to DNA copy

number58, we were able to use the TX Marker vs iFFL output curves to fit equation (3) (see Methods), and found

good agreement between the data and model (Figure 6b). Binning of cells at different TX Marker levels (and thus

DNA dosages) shows that the level of iFFL output indeed becomes insensitive to the plasmid copy number of the

iFFL above a minimal amount of DNA input (Figure 6b). Similar binning analysis for UR variants indicates that

simply decreasing output expression does not cause adaptation to DNA copy number (Supplementary Figure ??a). To

quantify the extent of iFFL output adaptation to DNA copy number, we compared the median expression of cells in

TX Marker-delineated bins to the fit value of the iFFL model parameter Ymax (Supplementary Figure ??b). We

considered a bin to be adapted to DNA copy number variation if log10(output) was within 5% of log10(Ymax) (i.e. the

log-scale robustness score was above 95%). As predicted from the model, increasing the number of uORFs (and thus
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increasing the output level) decreases the range of DNA copy numbers over which the iFFL output adapts to DNA

copy number variation (Figure 6c).We repeated these experiments and analyses with the CMVi-driven CasE iFFL and

found similar results (Supplementary Figure ??).

Previously, miRNA-based iFFLs58,59,61 placed the miRNA target sites in the 3’ UTR, whereas we placed the CasE

target site in the 5’ UTR. To test whether the choice of target site placement affects iFFL performance, we compared

variants of our CasE iFFL, and a miR-FF4 iFFL based on the design by Bleris et al.58, with either 5’ or 3’ target sites

(Supplementary Figure ??a). We found that for both the miRNA- and endoRNase-based iFFLs, variants with 5’

target sites show substantially improved robustness to DNA copy number variability compared to variants with 3’

target sites (Supplementary Figure ??b-c). Thus, the location of the target site an important design choice for iFFLs

with mRNA-targeting regulators.

We further investigated whether the iFFL could also adapt to temporal variation in DNA copy number. This

problem occurs during transient transfections because plasmids are diluted out with cell division, causing output

expression to decrease with time and complicating measurements. Our model suggested that the iFFL module could

maintain the output expression level for a longer period of time compared to UR samples (see Methods and

Supplementary Note ??). Indeed, variants of the iFFL with fewer uORFs (and thus smaller � ) exhibited decreasing

changes in median expression over the time period of 120 hours post-transfection (Figure 6d, see Supplementary

Figure ?? for full distributions at each time point). To provide a reference for our iFFL’s dynamics, we compared it to

the miR-FF4 iFFL with 5’ target sites. Even though the maximum output level of the miR-FF4 iFFL was similar to

that of the 4x-uORF CasE iFFL, the output level of the former varied substantially more over time (Figure 6d).

Specifically, the output level of the miRNA-based iFFL initially increases by ∼50% from 12 to 24 hours and then

decreases by ∼85% from 24 to 120 hours, whereas that of the best performing endoRNase-based iFFL (1xU-CasE)

does not change from 12 to 24 hours and decreases by only ∼50% from 24 to 120 hours. Simulations of the iFFL

during transient transfection indicate that the ability of the iFFL to adapt to plasmid dilution depends on fast

production and decay rates of the endoRNase (Supplementary Figure ??). Overall, these data demonstrate that the

CasE iFFL can also accurately set gene expression levels regardless of DNA dosage to cells and in the face of

dynamic transcriptional disturbances such as plasmid dilution.

Discussion

Context-dependence of genetic circuits due to factors such as resource loading is a pervasive problem that

hampers our ability to engineer systems that behave as intended5. Therefore, approaches that aid robust, predictable,

and reliable engineering of genetic circuits across various contexts are needed2,4. In this paper, we have demonstrated

that resource loading affects many common cell lines used in mammalian synthetic biology across nearly all
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combinations of routinely used promoters and TAs tested (Figure 1 and Figure 2), pinpointing resource variability as

a culprit of circuit malfunction in mammalian cells. We designed a feedforward controller that can make a GOI’s

expression level robust to resource variability. Specifically, in situations where resource loading by TAs knocked

down the expression level of an unregulated GOI (UR module) by up to 70%, the expression level of the

feedforward-controlled GOI (iFFL module) did not show appreciable change (Figure 4). This indicates that our iFFL

design can achieve near-perfect adaptation of ectopic gene expression in mammalian cells to changes in the

intracellular context. Across combinations of six cell lines and five TAs that we tested, the output of the iFFL was

consistently less affected by the TAs than that of the UR system (Figure 5). This demonstrates that the controller is

portable across cell lines and provides robustness to various resource competitors.

Near-perfect adaptation of our iFFL output to resource loading relies on decreasing the feedforward impedance �

(Figure 3). In turn, reducing � causes a reduction of the output level, highlighting a trade-off between robustness and

output expression (Figure 4c). It is possible to increase the level of the iFFL output without compromising robustness

by increasing the production rate of the output protein (Supplementary Figure ??). In future designs, this may be

accomplished by using expression-boosting sequences like WPRE62,63 for the output gene. In this work, we tuned �

by tuning the production rate of CasE via uORFs, which reduce translation initiation57. According to the model, it is

also possible to tune � by tuning the transcription rate, catalytic efficiency (�=KM), or degradation rate of CasE.

However, tuning � with uORFs is preferable to these options. Changing the promoter of the endoRNase has the

potential to decouple the resource pool used by the endoRNase gene from that used by the output gene, thereby

potentially reducing the ability to offset changes in resource availability. Mutating either the target site or endoRNase

to reduce their binding affinity or the catalytic rate of the endoRNase does not yield easily predictable outcomes. In

addition, mutations of the target site may alter the spontaneous degradation rate of the output mRNA, thus affecting

system performance. Finally, tuning the degradation rate of the endoRNase can also affect the dynamics of its

expression and thus the dynamics of the iFFL output (Supplementary Figure ??). By contrast, the use of uORFs

retains resource coupling between the endoRNase and output, enables predictable tuning of the model parameters

(Figure 3), and does not directly affect the output mRNA or endoRNase dynamics.

In addition to resource loading, our endoRNase-based iFFL design enables robustness of gene expression with

respect to both DNA dosage and dilution of plasmid DNA during transient transfection (Figure 6). The number of

actively-transcribed plasmids per cell delivered by transfection has been estimated to range between 1-100 by Bleris

et al.58. However, the three orders of magnitude of fluorescence variation of the TX Marker in most of our

experiments suggests a potentially larger range of copy numbers in our systems. In the face of this variability, our

iFFL output can adapt to variation in DNA dosage over ∼1-2 log decades, depending on the number of uORFs in the

5’ UTR of CasE. This range of adaptation is comparable to the TALER-based iFFL implemented by Segall-Shapiro

et al. in bacteria60 and is a substantial improvement compared to the current standard of miRNA-based iFFLs in
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mammalian cells58. Previous miRNA-based iFFL designs placed the miRNA target site(s) in the 3’ UTR of the

output gene, rather than the 5’ UTR as we did with CasE. Our experiments show that the position of the target site is

critical for both endoRNase- and miRNA-based iFFLs, with 5’ target sites yielding markedly improved adaptation to

changes in DNA copy number (Supplementary Figure ??). Our iFFL models assume that the output mRNA species is

completely destroyed when cleaved by an endoRNase/miRNA. However, whereas 5’ cleavage removes the 5’ cap,

which is detrimental to translation initiation64, 3’ cleavage may leave the transcript competent for continued

translation. In addition, Cas6-family endoRNases like CasE can remain tightly bound to the sequence of RNA to the

5’ side of their cleavage site and protect the bound strand from 3’ exonucleases56. However, this protective

mechanism is not likely to be the sole cause for the observed differences, as for miRNAs, the RISC complex instead

retains moderate affinity for the sequence to the 3’ side of the cleavage site65. Although we did not perform a

systematic experimental investigation, our mathematical model indicates that resource loading reduces the robustness

of the iFFL to variability in DNA copy number. This is because loading effectively decreases z for a given DNA copy

number D (z = Vz · D · R, see Figure 3), thereby moving the iFFL operation towards the regime where the output is

more sensitive to changes in D. Consistent with this model analysis, in Supplementary Figure ??e-f, we observe a

shift of points on the CMVi TX Marker (z) vs iFFL output curve towards the origin in response to resource loading.

Comparing an optimized miR-FF4 iFFL with 5’ target sites to our CasE iFFL variants, we found that the output

level of the CasE iFFL variants was more resistant to changes in plasmid copy number over time during transient

transfection (Figure 6d & Supplementary Figure ??). Simulations with an ordinary differential equation model of the

endoRNase-based iFFL indicate that robustness to DNA dilution during transient transfection can be achieved with

high production and decay rates of the endoRNase (see Supplementary Note ?? & Supplementary Figure ??a-b),

consistent with previous theoretical studies of iFFL dynamics in other contexts66–68. For our endoRNase-based iFFL,

we observed near-perfect adaptation of output levels to resource loading for samples measured at 72 hours (Figures

4-5), indicating that 72 hours is a conservative upper bound for the adaptation time of the circuit to perturbations.

Moreover, the distribution of output levels for the endoRNase-based iFFL variants with 0-2x uORFs are consistent

between 24-48 hours post-transfection (Supplementary Figure ??), suggesting adaptation takes much less than 72

hours. More detailed temporal studies will be required to accurately assess the adaptation time of our

endoRNase-based feedforward controller.

Based on our results in both plasmid (Figures 1 & 4) and lentiviral (Supplementary Figure ??) contexts, we

estimate that a gene dosage of ∼3-10 DNA copies with a strong promoter will produce sufficient TA protein

(depending on its AD) to cause appreciable knockdown of non-target genes. Consequently, a feedforward controller

of gene expression may be required in such contexts. Because of the observed resource loading effects on

lentiviral-integrated genes (Supplementary Note ??), future work will investigate the use of our iFFL in

genomically-integrated contexts such as lentiviruses and landing pads69,70.
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In our experiments, we found that transcriptional and not translational resources were significant contributors to

the observed loading effects (Supplementary Figure ??). Among transcriptional resources, it was previously shown

that only addition of extra mediator and not RNA polymerase or GTFs was able to rescue the effects of squelching in

in vitro transcription reactions29, indicating that CoAs such as the mediator are the major limiting resource for

TA-driven gene expression. Our mathematical model of resource loading takes this into account (Supplementary

Note ??) and reproduces the trends observed in experimental data in most combinations of cell lines and Gal4 TAs

(Supplementary Note ??). Nevertheless, the resource loading model can be improved in several directions. First, our

mechanistic model does not account for changes in cell growth rates caused by TAs (Supplementary Figure ??). This

is important because we observed that several TAs (especially Gal4-Rta, -p65, and -VPR) caused measurable

reductions in cell density, in part due to their effects on cell growth (Supplementary Figures ??, ??, & ??). Reduction

of cell growth decreases the dilution rate of the output protein, leading to an increase in output that can potentially

offset the decreased protein production rate caused by resource loading (Supplementary Note ?? & Supplementary

Figures ??-??). These effects should be considered in future models of resource loading along with accurate

measurements of cell growth rates. Second, our resource loading model assumes that the same resource limits

expression of all genes. In reality, there are hundreds of transcriptional cofactors (including CoAs and subunits of the

mediator complex) that interact with native and synthetic TFs52,53, which could be limiting for different genes. Future

work may identify the transcriptional and translational resources used by specific genetic devices and the differential

availability of these resources in distinct cell lines. Finally, several samples associated with three out of twelve

promoters tested (hUBC, hMDM2, and hMDM2c) showed relatively consistent increases in output levels in response

to resource loading by Gal4 TAs (Figure 2). While for the hUBC and hMDM2c promoters we could observe some

correlation between the increasing in output level and reduction in cell density by the TAs, we could not observe

definite correlation in the case of hMDM2 (Supplementary Figure ??). Instead, the increase caused by the hMDM2

promoter may result from direct binding of Gal4 to consensus UAS sequences in the hMDM2 promoter and

activation of the normally p53-activated minimal promoter. Thus, while the observed increases in output for these

promoters may be partially explained by changes in growth rate (Supplementary Note ?? & Supplementary Figure

??), other phenomena such as off-target binding and stress-responses to the TAs may be at play (see Supplementary

Note ??). Detailed investigation of how these specific promoters respond to stress inflicted by TAs is another avenue

of future research that can contribute to the predictive power of the resource sharing model for specific promoters.

While methods to make a GOI’s expression level robust to variability of gene expression resources have been

demonstrated in bacterial cells using feedback control71–73, no previous reports have solved this problem in

eukaryotic cells. Our feedforward controller and a miRNA-based device described in a concurrent report74 represent

the first eukaryotic solutions to decouple expression of a GOI from variable gene expression resources. Among the

cited existing bacterial solutions, only the sRNA-based feedback controller developed by Huang et al. in E. coli72 has
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achieved near-perfect adaptation to resource loading, similar to our feedforward controller in mammalian cells.

However, the bacterial solution of Huang et al.72 is not transportable to mammalian cells because it uses

prokaryotic-specific parts (sRNA and sigma factors) and is designed to adapt to loads in translational but not

transcriptional resources, which are the major contributors to resource variability in mammalian cells (Supplementary

Figure ??).

To decrease the knockdown in a GOI’s expression level due to expression of a TA, the expression of the TA could

be limited to the minimal level that provides the desired TA-driven output activation61 (Supplementary Figure ??c-d).

While reducing the concentration of a resource competitor is a viable approach to reduce loading effects, expressing

sufficient amounts of TA to maximize TA-driven gene expression will typically lead to substantial resource loading

and hence to knockdown of non-target genes (Supplementary Figure ??d). Our iFFL decouples GOI expression from

the levels of TAs, thereby eliminating the need to simultaneously optimize expression of both target and non-target

TA genes by scanning levels of the TA. Instead, the TA can be set to any desired level to achieve a given amount of

TA-driven output expression without consequence for non-target feedforward-regulated GOIs. Compared to

miRNA-based implementations, such as in a concurrent report74, both miRNA-based and endoRNase-based iFFL can

mitigate effects of resource loading on the expression level of a GOI. However, due to translational amplification,

endoRNase-based iFFLs benefit from a higher production rate of the effector molecule. This contributes to smaller a

feedforward impedance � and thus enhanced robustness of the endoRNase-based iFFLs (see Supplementary Note ??

& Supplementary Figure ??). Furthermore, expression of endoRNases but not of miRNAs directly requires

translational resources. As a consequence, iFFLs utilizing endoRNases can in principle also adapt to changes in the

availability of translational resources (see Supplementary Note ??).

In summary, the performance of genetic devices across various cell types and changing cellular conditions is

greatly affected by the cellular environment and in large part depends on the available gene expression resources. The

availability of these resources, in turn, becomes highly variable when gene expression changes during a circuit’s

operation. The endoRNase-based feedforward controller provides a readily-usable solution to maintain robust gene

expression despite variable levels of resources. Since the controller is highly portable, it can be easily implemented to

enable robust control of gene expression across a number of mammalian synthetic biology applications such as

cell-based therapies, gene therapies, and organoids. More generally, the endoRNase-based feedforward controller

enables predictable modular composition of engineered genetic systems in mammalian cells and can function as a

general-purpose tool for the design of sophisticated systems that perform as predicted across variable contexts.

Methods

Mathematical model to guide iFFL design
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We first define the TX marker vs output dose response curve. The steady state concentration of z, the TX marker,

can be written as z = Vz · D · R, where Vz is a lumped parameter independent of D and R, and defined similarly to Vy

in (2) (see Supplementary Note ?? for details). Substituting D · R = z=Vz into (1), we obtain the output level as a

function of the experimentally measurable quantity z:

y = Vy ·
z=Vz

1 + z=(Vz� )
: (3)

This TX marker vs output dose response curve is shown in Figure 3b. Its shape can be characterized by two metrics

Z50 and Ymax. Specifically, as z→ ∞, Ymax = Vy� . Z50 is the TX Marker’s fluorescence level at which the iFFL

module’s output is half of Ymax, which can be computed as Z50 := Vz� by (3).

We next quantify the feedforward impedance � for iFFL modules with different numbers of uORFs in the 5’ UTR

of the CasE transcription unit. With reference to Figure 3c, the relationship between n and � x has been experimentally

characterized in Gam et al.44, where the authors measured expression of a constitutive fluorescent protein p with

different numbers of uORFs in the 5’ UTR of its transcript. Since the expression level of a constitutive gene is

inversely proportional to the dissociation constant between ribosomes and its transcript (i.e., p ∝ 1=�x, see

Supplementary Note ??), we have

relative � x = (relative � x)(n) :=
� x(n)
� x(0)

=
p(0)
p(n)

; (4)

where p(n) and � x(n) are the steady state expression of p and the dissociation constant between ribosomes and protein

p’s mRNA transcript in the presence of n uORFs, respectively. Since we have derived from equation (3) that (i) Ymax

and Z50 are both proportional to � and hence proportional to � x and that (ii) � x(n) = (relative � x)(n) × � x(0) according

to (4), our model predicts that Ymax = Ymax(n) and Z50 = Z50(n) are both proportional to relative � x.

In addition to robustness to variation in free transcriptional and translational resource concentrations, the iFFL can

also attenuate the effect of DNA copy number variation (i.e. changes in D) on the module’s output. Since D and R are

clustered together in (1), our analysis on the module’s robustness to R carries over directly when analyzing its

robustness to D: when DR � � , we have y ≈ Vy� according to (1), which is independent of D. Robustness to

variations in D also includes temporal variability of DNA concentration, which is present in transient transfection

experiments due to dilution of DNA plasmids as cells grow and divide. As one decreases the number of uORFs in the

endoRNase’s transcript, our model predicts that the iFFL module becomes more robust to DNA copy number

variability in the sense that it’s output remains the same for a wider range of DNA copy numbers (i.e. smaller Z50).

This allows the module’s output to maintain Ymax for a longer period of time as DNA concentration gradually

decreases, a phenomenon we observed both experimentally (see Figure 6d & Supplementary Figure ??) and
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numerically (see Supplementary Figure ??).

Modular plasmid cloning scheme

Plasmids were constructed using a modular Golden Gate strategy similar to previous work in our lab44,69. Briefly,

basic parts (insulators, promoters, 5’ UTRs, coding sequences, 3’ UTRs, and terminators – termed level 0s (pL0s))

were created via standard cloning techniques. Typically, pL0s were generated via PCR (Q5 and OneTaq hot-start

polymerases, New England BioLabs (NEB)) followed by In-Fusion (Takara Bio) or digestion/ligation with the pL0

backbones; in addition, we also utilized direct synthesis of shorter inserts followed by ligation into pL0 backbones.

Oligonucleotides were synthesized by Integrated DNA Technologies (IDT) or SGI-DNA. pL0s were assembled into

transcription units (TUs – termed level 1s (pL1s)) using BsaI Golden Gate reactions (10-20 cycles between 16◦C and

37◦C, T4 DNA ligase). TUs were assembled into multi-TU plasmids using SapI Golden Gate reactions. To make

lentivirus transfer plasmids, pL0s or pL1s were cloned into a new vector (pLV-RJ v4F) derived from pFUGW

(AddGene plasmid #14883) using either BsaI or SapI Golden Gate, respectively. All restriction enzymes and T4

ligase were obtained from NEB. Plasmids were transformed into Stellar E. coli competent cells (Takara Bio).

Transformed Stellar cells were plated on LB agar (VWR) and propagated in TB media (Sigma-Aldrich).

Carbenicillin (100 � g/mL), kanamycin (50 � g/mL), and/or spectinomycin (100 � g/mL) were added to the plates or

media in accordance with the resistance gene(s) on each plasmid. All plasmids were extracted from cells with

QIAprep Spin Miniprep and QIAGEN Plasmid Plus Midiprep Kits. Plasmid sequences were verified by Sanger

sequencing at Quintara Biosciences. Genbank files for each plasmid and vector backbone used in this study, as well

as primers and cloning details, are provided in Source Data. Plasmid sequences were created and annotated using

Geneious (Biomatters). New plasmids used in this study are available on Addgene

(http://www.addgene.org/Ron_Weiss/ ).

Estimation of CpG island size in plasmids

The size of CpG islands in constitutive promoters (see Supplementary Figure ??) were estimated using the CpG

Islands v1.1 tool in Geneious (Thobias Thierer & Biomatters). The number of bases classified as part of a CpG island

(not necessarily contiguous) were summed and presented in the figure. Plasmid maps are annotated with the

highest-confidence bases of the CpG islands.

Cell culture

HEK-293 cells (ATCC), HEK-293FT cells (Thermo Fisher), HeLa cells (ATCC), and Vero 2.2 cells

(Massachusetts General Hospital) were maintained in Dulbecco’s modified Eagle media (DMEM) containing 4.5 g/L

glucose, L-glutamine, and sodium pyruvate (Corning) supplemented with 10% fetal bovine serum (FBS, from VWR).

CHO-K1 cells (ATCC) were grown in F12-K media containing 2 mM L-glutamine and 1500 mn/L sodium

bicarbonate (ATCC) supplemented with 10% FBS. U2OS cells (ATCC) were grown in McCoy’s 5A media with high

glucose, L-glutamine, and bacto-peptone (Gibco) supplemented with 10% FBS. All cell lines used in the study were
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grown in a humidified incubator at 37◦ and 5% CO2. All cell lines tested negative for mycoplasma.

Transfections

Cells were cultured to 90% confluency on the day of transfection, trypsinized, and added to new plates

simultaneously with the addition of plasmid-transfection reagent mixtures (reverse transfection). Transfections were

performed in 24-well or 96-well pre-treated tissue culture plates (Costar). Following are the volumes, number of cells,

and concentrations of reagents used for 96-well transfections; for 24-well transfections, all values were scaled up by a

factor of 5. 120 ng total DNA was diluted into 10 � L Opti-MEM (Gibco) and lightly vortexed. The transfection

regent was then added and samples were lightly vortexed again. The DNA-reagent mixtures were incubated for 10-30

minutes while cells were trypsinized and counted. After depositing the transfection mixtures into appropriate wells,

40,000 HEK-293, 40,000 HEK-293FT, 10,000 HeLa, 20,000 CHO-K1, 20,000 Vero 2.2, or 10,000 U2OS cells

suspended in 100 � L media were added. The reagent used in each experiment along with plasmid quantities per

sample and other experimental details are provided in Source Data. Lipofectamine LTX (ThermoFischer) was used at

a ratio of 1 � L PLUS reagent and 4 � L LTX per 1 � g DNA. PEI MAX (Polysciences VWR) was used at a ratio of 3

� L PEI per 1 � g DNA. Viafect (Promega) was used at a ratio of 3 � L Viafect per 1 � g DNA. Lipofectamine 3000 was

used at a ratio of 2 � L P3000 and 2 � L Lipo 300 per 1 � g DNA. Attractene (Qiagen) was used at a ratio of 5 � L

Attractene per 1 � g DNA. For experiments with measurement windows between 12-72 hours (as indicated on the

figures or in their captions), the media of the transfected cells was not replaced between transfection and data

collection. For experiments with measurements at longer time points, the transfected cells were passaged at 72 hours

in fresh media on a new plate. In order to maintain a similar number of cells for data collection at longer time points,

transfected cells were split at ratios of 1:2 or 1:4 for samples being collected at 96 or 120 hours, respectively. For all

transfections with Doxycycline (Dox, Sigma-Aldrich), Dox was added immediately after transfection; an exception is

the experiment shown in Supplementary Figure ??, in which Dox was added 24 hours after transfection.

In each transfection sample, we included a hEF1a-driven transfection marker to indicate the dosage of DNA

delivered to each cell and to facilitate consistent gating of transfected cells. Of the strong promoters we tested (CMV,

CMVi, and hEF1a), the hEF1a promoter gave the most consistent expression across cell lines and was generally less

affected by resource loading by Gal4 TAs (Supplementary Figures ??, ??, ??, & ??). The data in Supplementary

Figure ?? used CMV promoters for all transcription units (including the transfection marker).

Lentivirus production and infection

Lentivirus production was performed using HEK-293FT cells and second-generation helper plasmids MD2.G

(Addgene plasmid #12259) and psPax2 (Addgene plasmid #12260). HEK-293FT cells were grown to 90%

confluency, trypsinized, and added to new pre-treated 10 cm tissue culture plates (Falcon) simultaneously with

addition of plasmid-transfection reagent mixtures. Four hours before transfection, the media on the HEK-293FT cells

was replaced. To make the mixtures, first 3 � g psPax2, 3 � g pMD2.g, and 6 � g of the transfer vector were diluted into
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600 � L Opti-MEM and lightly vortexed. 72 � L of FuGENE6 (Promega) was then added and the solution was lightly

vortexed again. The DNA-FuGENE mixtures were incubated for 30 minutes while cells were trypsinized and

counted. After depositing the transfection mixtures into appropriate plates, 6 × 106 HEK-293FT cells suspended in

10 mL media were added. 16 hours after transfection, the media was replaced. 48 hours after transfection, the

supernatant was collected and filtered through a 0.45 PES filter (VWR).

For infections, HEK-293FT cells were grown to 90% confluency, trypsinized, and 1 × 106 cells were resuspended

in 1 mL media. The cell suspension was mixed with 1 mL of viral supernatant, then the mixture was added to a

pre-treated 6-well tissue culture plate (Costar). To facilitate viral uptake, polybrene (Millipore-Sigma) was added to a

final concentration of 8 � g/mL. Cells infected by lentiviruses were expanded and cultured for at least two weeks

before use in experiments using the same conditions for culturing HEK-293FT cells as described above.

RT-qPCR

Transfections for qPCR were conducted in 24-well plates (Costar). RNA was collected 48 hours after transfection

with the RNeasy Mini kit (Qiagen). Reverse-transcription was performed using the Superscript III kit (Invitrogen)

follwoing the manufacturer’s recommendations. Real-time qPCR was performed using the KAPA SYBR FAST

qPCR 2X master mix (Kapa Biosystems) on a Mastercycler ep Realplex (Eppendorf) following the manufacturer’s

recommended protocol. Primers for the CMV-driven output (mKate) targeted the coding sequence. Primers for 18S

rRNA were used as an internal control for normalization. The qPCR calculations are provided in Source Data.

Primers:

mKate (CMV:Output) forward: GGTGTCTAAGGGCGAAGAGC

mKate (CMV:Output) reverse: GCTGGTAGCCAGGATGTCGA

18S forward: GTAACCCGTTGAACCCCATT

18S reverse: CCATCCAATCGGTAGTAGCG

Flow cytometry

To prepare samples in 96-well plates for flow cytometry, the following procedure was followed: media was

aspirated, 50 � L PBS (Corning) was added to wash the cells and remove FBS, the PBS was aspirated, and 40 � L

Trypsin-EDTA (Corning) was added. The cells were incubated for 5-10 minutes at 37◦ C to allow for detachment and

separation. Following incubation, 80 � L of DMEM without phenol red (Gibco) with 10% FBS was added to

inactivate the trypsin. Cells were thoroughly mixed to separate and suspend individual cells. The plate(s) were then

spun down at 400 × g for 4 minutes, and the leftover media was aspirated. Cells were resuspended in 170 � L flow

buffer (PBS supplemented with 1% BSA (Thermo Fisher), 5 mM EDTA (VWR), and 0.1% sodium azide

(Sigma-Aldrich) to prevent clumping). For prepping plates of cells with larger surface areas, all volumes were scaled

up in proportion to surface area and samples were transferred to 5 mL polystyrene FACS tubes (Falcon) after

trypsinization. For standard co-transfections, 10,000-50,000 cells were collected per sample. For the
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poly-transfection experiment and transfections into cells harboring an existing lentiviral integration, 100,000-200,000

cells were collected per sample.

For the experiments shown in Figure 1 and Supplementary Figures ??, ??, ??, & ??, samples were collected on a

BD LSR II cytometer located in the Koch Institute Flow Cytometry Core equipped with a 405nm laser with 450/50nm

filter (‘Pacific Blue’) for measuring TagBFP or EBFP2, 488 laser with 515/20 filter (‘FITC’) for measuring EYFP or

mNeonGreen, 561nm laser with 582/42nm filter (‘PE’) or 610/20nm filter (‘PE-Texas Red’) for measuring mKate2 or

mKO2, and 640 laser with 780/60nm filter (‘APC-Cy7’) for measuring iRFP720. For all other experiments, samples

were collected on a BD LSR Fortessa located in the MIT Synthetic Biology Center equipped with a 405nm laser with

450/50nm filter (‘Pacific Blue’) for measuring TagBFP or EBFP2, 488 laser with 530/30 filter (‘FITC’) for measuring

EYFP or mNeonGreen, 561nm laser with 582/15nm filter (‘PE’) or 610/20nm filter (‘PE-Texas Red’) for measuring

mKate2 or mKO2, and 640 laser with 780/60nm filter (‘APC-Cy7’) for measuring iRFP720. 500-2000 events/s were

collected either in tubes via the collection port or in 96-well plates via the high-throughput sampler (HTS). All events

were recorded and compensation was not applied until processing the data (see below).

Intracellular antibody staining

HA-tagged Gal4 TAs were stained with anti-HA.11 directly conjugated to Alexa Fluor 594 (BioLegend catalogue

#901511, clone 16B12, isotype IgG1 � ). As a control for non-specific anti-HA binding, untransfected cells were

stained with the same antibody. Cellular Ki-67 was stained with anti-Ki-67 directly conjugated to PE/Dazzle 594

(BioLegend catalogue #350533, isotype IgG1 � ). As a control for non-specific anti-Ki-67 binding, cells were stained

with an IgG1 � isotype control directly conjugated to PE/Dazzle 594 (BioLegend catalogue #400177).

Staining was performed on cells grown in 96-well plates. Cells were washed with PBS, trypisinized, and separated

into individual cells as described above for preparing samples for flow cytometry. After quenching the trypsin

reaction and mixing into a single-cell suspension, cells were transferred to U-bottom plates and pelleted. All

centrifugation steps with plates occurred at 400 × g for 4 minutes. After pelleting, the media-trypsin mix was

aspirated and the cells were fixed via incubation in 50 � L of 4% formaldehyde (BioLegend) for 20 minutes at room

temperature. After fixation, the cells were pelleted, the fixation buffer was removed, and the cells were resuspended

in 50 � L Intracellular Staining Permeabilization Wash Buffer (BioLegend). Antibodies were added to each well using

the manufacturer’s recommended volumes, then plates were placed on a nutator in the dark in a cold room (4◦ C)

overnight. After incubation with the antibody, the cells were washed 3 times with 50 � L permeabilization buffer, then

resuspended in 170 � L flow buffer (see above for formulation).

Flow cytometry data analysis

Analysis of flow cytometry data was performed using our MATLAB-based flow cytometry analysis pipeline

(https://github.com/Weiss-Lab/MATLAB_Flow_Analysis ). Basic processing steps with example data are

shown in Supplementary Figure ??. Briefly, single cells were isolated by drawing morphological gates based on
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cellular side-scatter and forward-scatter. Arbitrary fluorescence units were converted to standardized molecules of

equivalent fluorescein (MEFL) units using RCP-30-5A beads (Spherotech) and the TASBE pipeline process75.

Fluorescence compensation was performed by subtracting autofluorescence (computed from wild-type cells),

computing linear fits between channels in single-color transfected cells, then using the fit slopes as matrix coefficients

for matrix-based signal de-convolution. Threshold gates were manually drawn for each channel based on the

fluorescence of untransfected cells. Generally, transfected cells within a sample were identified by selecting cells that

pass either the gate for the output of interest (Output+) or the gate for the transfection marker (TX Marker+). Binning

was performed by defining bin edges, then sorting cells into a bin if the expression of the reporter used for binning

was less-than-or-equal-to the high bin edge and greater-than the low bin edge. Median fluorescence levels were used

for summary statistics so as not to make any assumptions about the expression distributions. In order to avoid the

artefact of negative fold-changes, non-positive fluorescence values were discarded prior to making measurements on

binned or gated populations.

Density of cells in scatter plots was estimated by sorting the cells into 25 evenly-spaced bins in each dimension

(for N dimensions, 25N total bins), finding the number of cells in each bin, then linearly interpolating the density for

each individual cell using the bin centers as the interpolation nodes. Density was calculated with either the log- or

biexponentially-transformed data (see plot axes) because the dominant variance is approximately log-distributed. The

outer boundaries of the bins in each dimension were automatically found by taking the minimum and maximum

values of the data, then respectively subtracting and adding 5% of the log/biexponential range between min and max.

In Figure 2, our library of constitutive promoters had different nominal expression levels and were variably

affected by resource loading. We thus include a discussion and examples of how fluorescent gating strategies affect

the measurements of expression and fold-changes in Supplementary Note ?? and Supplementary Figure ??. Some

promoters drove expression that was nearly undetectable (Supplementary Figure ??). In order to limit the bias in our

reporting of minimally-affected promoters by the proximity of {P}:Output1 expression to autofluorescence, our

analysis of this data incorporates an additional autofluorescence subtraction step described in Supplementary Note

??. A comparison of the differences in fold-changes with and without this additional autofluorescence subtraction is

shown in Supplementary Figure ??a. This step reduced the correlation between the nominal output levels of

{P}:Output1 and the fold-changes in response to resource loading by Gal4 TAs (Supplementary Figure ??b).

When first analyzing the data in Figure 4, we found that the measurements of fold-changes and robustness for the

UR variants with diluted output plasmid DNA were sensitive to the fluorescent gating strategy used in the analysis.

Our typical gating routine of selecting cells positive for either the output or the transfection marker yielded

fold-changes of the diluted UR variants that were much larger than when gating on cells positive for just the output.

Conversely, both gating strategies yielded similar fold-changes for the iFFL variants regardless of their nominal

output. We suspect that the difference in measurements for the diluted UR variants may result from (i) reduced UR
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plasmid uptake when forming lipid-DNA complexes for co-transfection with the Gal4-VPR plasmid (which is larger

than the DNA-mass-offsetting plasmid Gal4-None) and/or (ii) repression of UR output expression below the

autofluorescence threshold. Since these confounding factors could not be distinguished, we report the results for the

cells gated positive for just the output (which more conservatively estimates fold-changes in the output of the UR

system) in the main figures and include results for gating cells positive for either the output or the transfection marker

in Supplementary Figures ?? & ?? for comparison. For the hEF1a iFFL, we also include comparisons of results with

both gating strategies in Supplementary Figures ??-??.

Calculation of fold-changes and robustness scores

For quantifying the effects of resource loading, we measured fold-changes by dividing the median output level of

each sample by that of the equivalent sample in the absence of resource loading (i.e. the nominal output level of the

module of interest). The nominal output is defined as the level of output in the presence of either Gal4-None (Gal4

DBD only, used directly when comparing Gal4 TAs) or 0 ng Gal4-{AD} (used in dose-responses).

Fold-∆(Gal4-{AD}) =
Output(Gal4-{AD})
Output(Gal4-None)

(5)

Fold-∆(Gal4-{AD} = x) =
Output(Gal4-{AD} = x)
Output(Gal4-{AD} = 0)

(6)

Where log2-transformed fold-changes are shown for experiments with multiple repeats, the values shown are the

mean of the log2-transformed fold-changes, rather than the log2-transformation of the mean of the fold-changes. This

order of operations ensures that standard deviations of the fold-changes can be computed directly on the

log2-transformed scale.

For comparing UR and iFFL variants, we also computed robustness scores from the fold-changes using the

formulae below:

Robustness(Gal4-{AD}) = 100 ·
�
1 −

���1 − Fold-∆(Gal4-None)
���� (7)

Robustness(Gal4-{AD} = x) = 100 ·
�
1 −

���1 − Fold-∆(Gal4-{AD} = x)
���� (8)

Estimation of cell density by flow cytometry

As a post-hoc method of measuring the effects of toxicity in samples transfected with resource competitors, we

estimated the cell density observed at the time of fluorescence measurements. When collecting flow cytometry data,

we typically constrained the number of events collected, making the count of cells per sample not representative of

the total number of cells per well. We instead estimated cell density in a given sample with the following formula:

[Cells] (cells · � L−1) =
Event rate (cells · s−1)

Flow rate (� L · s−1)
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To compute the event rate, we estimated the number of cells (i.e. events passing morphological gating) collected

per second in each sample. The length of time between the measurements of individual cells in flow cytometry

approximately follows an exponential distribution. We thus fit an exponential distribution using the MATLAB

function ‘fitdist()’ (https://www.mathworks.com/help/stats/fitdist.html ) to the differences between

time-stamps of sequentially-collected cells. Before fitting, we removed inter-cell times larger than the 99.9th

percentile to prevent biasing by large outliers. The characteristic parameter of the exponential distribution � is the

inverse of the average time between events. Thus, the event rate is given by 1
�
, which is also the mean of the

exponential distribution.

To ensure a known and controlled flow rate, any samples with concentration measured were collected via the HTS

attached to the flow cytometer. The flow rate of the HTS was can be set through the FACSDiva Software (BD)

controlling the instrument. The flow rate of each sample was recorded and input into the calculation.

Because changes in the overall density of cells in a sample depends both on the potency of growth inhibition by

transfected genes as well on the fraction of cells transfected, we only analyzed in-depth and reported values for

samples from HEK cell lines. The other cell lines (HeLa, CHO-K1, Vero 2.2, and U2OS) were generally too poorly

transfected to achieve reliable and sensitive measurements of changes in cell density as a function of transfected toxic

genes.

Model fitting

Where possible, fluorescent reporters were used to estimate the concentration of a molecular species for the

purpose of model fitting. For fitting the Gal4 TA dose response curves (both on-target activation and off-target

resource loading) in Figure 1 and Supplementary Figure ??, we used a fluorescent marker co-titrated with the Gal4

activators (Gal4 Marker) to approximate the amount of Gal4 delivered per cell. The Gal4 marker correlated with the

DNA dosage with an R2 value of 0.86 or better for each experimental repeat (Supplementary Figure ??a). However,

the sensitivity of activation to Gal4 levels made the measurements as a function of Gal4 DNA dosage relatively noisy

between experimental repeats (Supplementary Figure ??b-e). Thus, the marker levels could more accurately estimate

the amount of Gal4 expressed in the median cell than the DNA dosages.

For fitting both the resource sharing and iFFL models, we used the MATLAB function ‘lsqcurvefit()’

(https://www.mathworks.com/help/optim/ug/lsqcurvefit.html ), which minimizes the sum of the squares

of the residuals between the model and the data. As the function input values we used the level of either the Gal4 TA

(in the case of resource sharing – as measured by Gal4 Marker) or the transfection marker (in the case of the iFFL).

For fitting the Gal4 TA dose-response data, the residuals were computed between the median CMV:Output1 or

UAS:Output2 levels and function outputs directly. In addition, all median values computed from different

experimental repeats were pooled together before fitting. For fitting iFFL and UR models, the residuals were

computed between the log10- and biexponentially-transformed levels of the output protein of interest and the log10-
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and biexponentially-transformed function outputs, respectively. In experiments with the hEF1a iFFL being tested

only in HEK-293FT cells, the entire morphologically-gated population of cells was used for fitting. In hEF1a iFFL

experiments containing multiple cell types, to prevent the model from over-fitting the untransfected population in

more difficult-to-transfect cells, the cells in each sample were analytically binned into half-log-decade-width bins

based on the transfection marker, and an equivalent number of cells from each bin were extracted, combined, and

used for fitting. In samples with the CMVi iFFL, the relatively high expression of the CMVi promoter compared to

the hEF1a promoter (which is used as a transfection marker and proxy for DNA/resource input level z) in most cell

lines imposes non-linearity in the transfection marker vs output curve at low plasmid DNA copy numbers per cell.

This non-linearity led us to gate cells positive for either the iFFL output or the transfection marker for fitting. For the

resource sharing models, all parameters for all Gal4 TAs were fit simultaneously using a custom function,

‘lsqmultifit()’, that was created based on ‘nlinmultifit()’ on the MATLAB file exchange

(https://www.mathworks.com/matlabcentral/fileexchange/

40613-multiple-curve-fitting-with-common-parameters-using-nlinfit ).

Goodness of fit was measured by computing the normalized root-mean-square error CV(RMSE) using the

following formula:

CV(RMSE) =

q
1
ȳ

P
i(y(xi) − f (xi))2

ȳ

Where y(xi) is the value of the data at the input value xi, ȳ is the mean of y for all values of x, and f (xi) is the

function output at input value xi.

Resource loading characterization data were fit with the following equation (see Supplementary Note ?? for more

details):

Output1 = � 1 ·

RTX
k12

1 + RTX
k12

; (9)

Output2 = � 2 ·

RTX
k22
·
�

u2
k21

� 2

1 +
�

u2
k21

� 2
·
�
1 + RTX

k22

� ; (10)

iFFL data was fit with equation (3) above, which is reproduced here for convenience:

y = Vy ·
z=Vz

1 + z=(Vz� )
:

For other comparisons where we present values of r or R2, the former is the Pearson’s correlation computed with

the MATLAB function ‘regression()’

(https://www.mathworks.com/help/deeplearning/ref/regression.html ), and the latter is the coefficient
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of determination between predicted and actual values.

Data Availability

Source Data accompanying this manuscript includes Genbank sequences for all plasmids used in this study, primer

sequences, cloning details, measured median expression levels, fit parameter values, simulation parameter values,

qPCR analysis calculations, the number of cells per distribution plot, and details about plasmid dosages in each

transfection. New plasmids used in this study are available for distribution from Addgene

(http://www.addgene.org/Ron_Weiss/ ). Raw .fcs files are available from the corresponding authors upon

reasonable request.

Code Availability

General MATLAB code for use in .fcs file processing and analysis are available under an open-source license in

our GitHub repository at https://github.com/Weiss-Lab/MATLAB_Flow_Analysis . Specific .m scripts for

each experiment are available from the corresponding authors upon reasonable request.
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