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Abstract

The past decade has witnessed the rise of a new exciting field of en-

gineering: synthetic biology. Synthetic biology is the application of

engineering principles to the fundamental components of biology with

an aim of programming cells with novel functionalities for energy, envi-

ronment, and health applications. Control design principles have been

used in synthetic biology since its on-set in the early 2000’s, for design-

ing dynamics, mitigating the effects of uncertainty, and aiding mod-

ular/layered design. In this review, we provide a basic introduction

to synthetic biology, its applications and its foundations, and then de-

scribe in more detail how control design approaches have permeated the

field since its inception. We conclude this review with a discussion of

pressing challenges that the field is facing for which new control theory

is required, with the hope of attracting researchers in the control theory

community to this new exciting engineering application.
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1. Introduction to synthetic biology

Synthetic biology is a nascent, interdisciplinary research field, at the intersection of many

areas, including biotechnology, genetic engineering, molecular biology, biophysics, electrical

engineering, control engineering and evolutionary biology (1). One of the aims of the field is

to program cells, from single-cell organisms (e.g., bacteria) to cell populations, tissues, and

organs for a variety of applications ranging from health (e.g., developing new revolutionary

cures to cancer and diabetes), to energy (e.g., biofuels), to environment (e.g., biosensing

and bioremediation), to regenerative medicine (e.g., reprogramming cell identity) (2, 3). In

this section, we provide a short background on synthetic biology and then describe some of

its many applications that can potentially revolutionize health and energy.

1.1. Background on synthetic biology

Historical perspective. Synthetic biology is largely based on scientific advances in

biotechnology that have occurred over the past 50 years, chiefly DNA cloning techniques,

DNA amplification techniques, the ability to insert extraneous DNA within a cell (trans-

formation or transfection), and DNA sequencing (1) (Figure 1a). Specifically, the discovery

of DNA restriction enzymes in the late 1960’s allowed for the cutting and pasting of DNA

at targeted sites (4). In the 1970’s, new technologies allowed for the insertion of synthetic

DNA into host cells (5). These scientific advances enabled one of the first applications

of engineering biology with the production of synthetic insulin (6). The discovery of

polymerase chain reaction (PCR) (7) and DNA sequencing technology (8) in the 1980’s,
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made modification of DNA for insertion into cells quicker and easier. The construction

of the first two synthetic genetic circuits, a ring-oscillator (9) and a toggle switch (10)

in the year 2000 was based on these technologies. At this point in time, much work was

focused on the combination of a few DNA parts to form simple circuit modules with the

aim of understanding the purpose of similar naturally occurring motifs (11) (Figure 1a,

Modules era). More recently, the field has progressed to a “systems view” of biological

processes (12), focusing on creating larger systems composed of well-characterized parts

and subsystems. To this end, intense research has gone into strategies for enabling

modular and layered design (13) (Figure 1a, Systems era). This research direction is

important to set the basis for the rational design of systems that are sophisticated enough

to solve real-world problems. Therefore, the community has placed substantial efforts

toward creating novel parts (for example, CRISPR-based regulators (14)), characterizing

parts (15), providing insulation between modules (16), and enforcing functional circuit

modularity against the effects of loads through the design of load drivers (17).

Encoding “programs” on DNA through core biomolecular processes. A genetic

circuit realizes its functionalities by encoding the production and subsequent interactions of

biomolecules (for example, proteins) on DNA sequences. Historically, early genetic circuits

operate by transcriptional regulation, by which a protein, x, alters the rate at which another

gene expresses its protein, y (see Figure 1a). Specifically, protein x can repress (a) or

activate (→) the rate at which protein y is produced by binding to the promoter region

upstream of the y gene and by recruiting or inhibiting gene expression machinery. In

this sense, we can view a genetic circuit as a network of input/output (I/O) dynamical

systems. Inputs and outputs represent the amounts of proteins (here, x and y) and each

subsystem (node) in the network represents the dynamical process of protein production

from DNA (Figure 1a, Modules era). Any gene, including synthetic ones, utilizes the cell’s

built-in machinery to create proteins. First, RNA polymerases (RNAPs) read the gene

sequence and create a mirroring messenger RNA (mRNA), through a process called gene

transcription. Then, the mRNA is translated by another cellular enzyme known as the

ribosome to create the amino acid chain which forms the protein, a process called mRNA

translation. This dynamic process of protein production from DNA is called the central

dogma of molecular biology (18). The process of transcriptional regulation has been studied

at length and well-characterized mathematical models are available (19). When molecular

counts are sufficiently high, the simplest mathematical model uses ordinary differential

equations (ODEs) to describe the protein and mRNA concentrations. Referring to xa y in

Figure 1b and using m and y (italic) to represent the concentrations of protein y’s mRNA

and protein y, respectively, the dynamics can be written as

d

dt
m = α

1

1 + (x/k)n
− δm d

dt
y = βm− γy, (1)

where α is the maximum rate of transcription, and k is the dissociation constant between

the y’s DNA and x. Stronger binding affinity between the two molecules can be repre-

sented by smaller k value. Parameter n describes the number of x molecules required to

bind together before they can act to regulate expression of y, also known as cooperativity.

Parameters δ and γ represent the mRNA and protein decay rate constants, respectively,

due to dilution (arising from cell volume increase as they grow) and/or degradation (by

degradation enzymes in cells), and β represents the translation rate constant. This model

can be derived from chemical reactions under suitable quasi-steady state assumptions (19).
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Overview of synthetic biology. (a) Synthetic biology on the temporal axis. (Enabling
science) Cloning allows for cutting (digest) and pasting (ligate) pieces of DNA together,
thus enabling one to encode a circuit on DNA plasmid. (Modules era) The first synthetic
systems created were simple modules performing tasks such as oscillations and switching.
(Systems era) Construction of more complex circuits is based on a modular/layered design
approach. (b) Core biomolecular processes, including transcriptional regulation,
protein-protein interaction and RNA-RNA interaction, can be exploited to build genetic
circuits in vivo.

In addition to transcriptional regulation, a variety of other biomolecular mechanisms

regulate protein activities in nature, and have recently been engineered for synthetic biology

applications. A large portion of such regulations are carried out through protein-protein

interactions, including, for instance, allosteric modification and covalent modification (19).

One of the most common types of covalent modification is the process of phosphorylation,

illustrated in Figure 1b. In this process, a kinase z transfers a phosphate group to the

substrate x, resulting in a conformational change of the substrate to become active (x∗).

Dephosphorylation, on the other hand, is a complementary process where a phosphatase (y)

removes a phosphate group from the active substrate (x∗). Phosphorylation and dephos-

phorylation dynamics are much faster than gene expression, and can be used in genetic

circuits where rapid responses are required. This property has been exploited, for exam-

ple, to design biomolecular insulation devices (see Section 4.1). Other common types of
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protein-protein interactions include allosteric regulation, phosphotransfer, and regulation

of protein degradation. They have been successfully engineered in synthetic genetic circuit

(see an example in Section 3.3). We refer the readers to (19) for detailed descriptions of

these core processes.

Increasing experimental evidence since the 1990s have suggested that RNAs are not

only functional as messengers between DNA and proteins, but also as important regulators

for gene expression (see (20) for a review). For example, many regulatory small RNAs

(sRNAs) have been identified in bacteria, where they are involved in a variety of adaptive

responses (20, 21). With reference to Figure 1b, most commonly, sRNAs (s) can bind with

their target mRNAs (m) to expedite their degradation and/or inhibit translation. Quan-

titative modeling of sRNA-mediated regulation has revealed distinctive features compared

to transcriptional regulations, such as faster response and switch-like behaviors (22). RNA-

mediated regulations are also prevalent in eukaryotes, where single-stranded microRNAs

(miRNAs) inhibit mRNA translation and double-stranded short interfering RNAs (siR-

NAs) can cleave mRNAs (20). Finally, the advent of CRISPR-Cas9 technology in recent

years has provided another class of highly efficient tools to perform gene regulation through

guide RNAs (14). However, while initial experimental results have achieved remarkable

success, mathematical characterization of these processes are still largely lagging behind.

1.2. Applications of synthetic biology

Health. Synthetic biology can revolutionize disease diagnosis and treatment. Synthetic

genetic circuits can sense the intracellular concentrations of multiple molecular species,

carry out logic computations through biomolecular reactions, and output a visible signal

(e.g., a reporter protein) when a set of logic conditions are met. For example, these logic

conditions can be designed to classify the chemical signature typical of cancer cells, so

that the circuit can recognize cancer and trigger a number of actions (23) (Figure 2a).

As a result, synthetic genetic circuits can program bacteria to colonize target sites where

cancer is detected, providing a promising approach to reduce invasive tests for diagnosis

and health monitoring (29, 30). Programmed bacteria can further serve as smart vehicles

for drug delivery by lysing at the tumor site and releasing therapeutic proteins to reduce

tumor activity (24) (see Figure 2b).

Synthetic biology also provides powerful tools to program T cells, a type of body

immune cells, to specifically attack cancer cells (25). This type of treatment, known as

immunotherapy, has recently demonstrated successful preliminary clinical trials (25). As

shown in Figure 2c, synthetic receptors engineered on T cells, possibly combined with

biomolecular logic gates, can identify cancer cells with high specificity. Synthetic controllers

can then interact with the cellular chemotaxis pathway to migrate T cells to tumor cites.

After T cells reach the target site, in vivo genetic controllers can actuate negative feedback

actions to regulate the duration and strength of T cell activity to protect non-cancerous

cells (31). Synthetic biology may also be used to enhance understanding of natural

systems, including understanding of cell fate decisions (32) and can provide unprecedented

tools to reprogram cell fate for regenerative medicine (26, 33). For instance, Saxena

et al. designed a synthetic reprogramming circuit that converts pancreatic progenitor

cells derived from human induced pluripotent stem cells (hIPSCs) into insulin-secreting

beta-like cells by strictly regulating the timing and expression of three key transcription

factors in vivo (26) (see Figure 2d). Consequently, it has become possible to implant
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Applications of synthetic biology to health, environment and energy. (a) A
multi-input cell type classifier circuit used for cancer diagnostic ex vivo (23). A reference
profile of miRNAs that are expressed in cancer cells is used to construct a genetic logic
circuit realized through RNA interactions. When transfected into a cancer cell, the output
of the logic circuit triggers expression of a fluorescence protein. (b) Bacteria can be
engineered to periodically release drug in vivo (24). A consortium of engineered bacteria
is delivered to the target tumor site. Each cell contains a genetic clock, a cell lysis gene, a
therapeutic protein production gene and a cell-cell communication module. The
synchronized clocks control cell lysis in a periodic manner to release the therapeutic
proteins, resulting in periodic drug delivery to the patient. (c) Synthetic genetic circuits
increase the specificity and safety of cancer immunotherapy (25). Receptors can be
engineered to trigger T cell activity when cancer cells are detected. Feedback loops can be
used to limit the response of T cell activity to avoid side effects. (d) A synthetic lineage
control circuit, activating the expression of three transcription factors according to a
temporal pattern, hIPSCs can be reprogrammed into insulin-secreting beta-like cell for
treating diabetes (26). (e) A biosensor that detects arsenic presence and indicates its
amount by modulating the period and amplitude of a oscillatory reporter gene expression
(27). (f) Genetic controllers can be used to interact with engineered metabolic pathways
in microbes to improve their biofuel productivity (28).
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functional beta-cells in diabetes patients that are derived from the patient’s own tissue cells.

Environment and energy. Programming microbes to detect and report toxicants in

water, air, soil and food is one of the earliest applications of synthetic biology. To create

an environmental biosensor, genes encoding the reporter proteins and proteins that carry

out logic computation are artificially brought under the control of the sensory-regulatory

system of the host cell (34). This design technique has been utilized to detect TNT, heavy

metals and antibiotics (see (34) for a comprehensive review). More recently, sensors that

produce a dynamic output have been developed due to their advantages in signal trans-

mission and processing. Figure 2e illustrates a bacterial biosensor that produces oscillatory

fluorescence output, whose magnitude and frequency reflects the concentration of arsenic

in the environment (27). In addition to sensing hazards, microbes can be programmed

to remove contaminants, including heavy metals and organic pollutants for bioremediation

(35, 36). Microbes may also be programmed to convert biomass feedstock into biofuels (37),

and synthetic controllers have been implemented to improve productivity (28, 38) (Figure

2e and Section 3.2). Finally, biosafety is also a concern for mass application of microbial

biosensors, as they may escape and proliferate. To ease concerns about this safety issue,

genetic toggle switches (see Section 2.1) have been engineered so that the host microbes

survive only under specific conditions not found in nature (39, 40).

1.3. Control design for synthetic biology

Feedback control has permeated synthetic biology since its inception. In fact, the first two

circuits built, which marked the beginning of the field in the year 2000, both used feedback

to design dynamics. The ability of designing dynamics is one of the several celebrated

applications of feedback control in traditional engineered systems. Feedback makes an

unstable system stable at a desired attractor by virtue of interconnections resulting in

“closed loop” dynamics that modify the natural behavior (e.g., highly agile, open-loop

unstable aircrafts (41)). Examples of this include the repressilator, which used negative

feedback along with a sufficiently large phase lag to create an oscillating system (9). In

contrast, the toggle switch used positive feedback, along with the nonlinearity of the steady

state I/O characteristic to obtain a bistable system that can hold two different states in

memory (10).

In the transition from the modules era to the systems era (Figure 1a), the ability

of performing modular design has arisen as critical to the field. Maintaining modularity

is a remarkable achievement of feedback. Feedback can enable a system to maintain its

I/O properties when connected and thus provides simplified abstractions for higher design

layers. Feedback enables layered design abstractions by “hiding” the details of complex

dynamics and uncertainty (e.g., Black’s amplifier design (42)), so that a designer may

ignore a system’s internal structure, enabling him or her to only have to reason about the

system’s I/O properties. Insulation devices in synthetic biology provide one example of the

use of high-gain negative feedback to aid modular composition by buffering interconnected

systems from impedance-like effects (e.g., retroactivity) (17, 43).

Synthetic genetic circuits are subject to a number of perturbations (e.g., noise, temper-

ature changes, changes in the cellular chassis) and uncertainty (e.g., 10x-100x uncertainty

on the parameter values). Managing uncertainty is a crucial ability in any engineered sys-

tems. Feedback allows for high performance in the presence of uncertainty by comparing
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actual and desired output values through accurate sensing (e.g., repeatable performance of

amplifiers with 5x component variation (42)). In synthetic biology, negative feedback and

feedforward control implementations, shown in Figure 1b, have been throughout used to

mitigate the effects of unknowns (see (44, 45), for example). We describe these applications

of control-theoretic concepts to synthetic biology in detail in the next several sections.

2. Feedback control to design dynamics

In this section, we describe a number of synthetic genetic circuits whose design and analysis

are enabled by theoretic tools from control and dynamical systems, including the genetic

multistable systems and oscillators.

2.1. Multistable systems

Multistable systems are generally useful in endowing a system with the ability to maintain a

particular state after the input is removed. One notable example of this is the toggle switch

(10, 46). This is a circuit in which two proteins, x1 and x2, mutually repress each other

(Figure 3a.1). Under appropriate conditions, this circuit exhibits three steady states–two

stable and one unstable. A simplified model governing the toggle switch’s dynamics is given

by

d

dt
x1 =

α1

1 + xn2
− x1

d

dt
x2 =

α2

1 + xm1
− x2, (2)

where x1 and x2 represent the concentrations of proteins x1 and x2, respectively, α1 and α2

represent their maximal production rates, and n and m represent the cooperativity of x1

and x2, respectively. Analytical conditions under which the system displays multistability

can be given using this model. For example, the production rates α1 and α2 must be

approximately balanced (10). More recently, the toggle switch has been used as a critical

element in more complex circuits for applications such as biocontainment removal (40) and

biosensors (27). Toggle switches may also be used in “digital” logic systems to maintain

memory (47). These applications lead to requirements of constructing toggle switches with

faster switching time and lower metabolic burden, which are still among some of the current

design challenges (48).

Multistable systems are frequently found in natural gene regulatory networks pertaining

to cellular fate determination (32, 49, 50). Cellular fate determination is typically thought

of as a potential landscape in which different potential wells correspond to different cell

types (50, 51). Figure 3a.2 shows a popular motif in cell fate decision, which has three

stable steady states (52). Major challenges in the control of natural multistable systems

arise as complexity grows, including methods to trigger transitions to desired steady states

to artificially reprogram cell identity (33).

2.2. Oscillators

Oscillators are prevalent in natural systems and are critical for a number of functionalities,

such as the circadian pacemaker (56) and the timing of metabolism (57). A number of

synthetic genetic oscillators have been constructed in early-mid 2000s with the initial goal

to understand nature’s “design principles” at the basis of time-keeping (9, 46, 54). Lately,

these circuits have found application in proposed novel cancer therapies based on synthetic

8 Qian et al.
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Feedback for designing dynamics. (a) Multistability in genetic circuits. Circles on the
phase plot represent stable steady states, black solid lines are nullclines, and colored
regions represent the region of attractions of the respective stable steady state. (a.1)
Circuit diagram and phase plot of the genetic toggle switch built in 2000 (10). (a.2)
Circuit diagram and phase plot of a tristable differentiation network motif built in 2017
(53). (b) Synthetic genetic oscillators. (b.1) The repressilator circuit built in 2000 (9).
(b.2). The activator-repressor oscillators built in 2008 (54) (left) and 2003 (46) (right).
(b.3). Sample trajectories of the oscillators. (c) Autoregulation shapes temporal response
of gene expression. The negatively autoregulated gene (55) (dotted line) has a shorter rise
time than that of the unregulated gene (solid line) and of the positively regulated gene,
which has the slowest rise time (dashed line).

biology for enabling periodic drug release and in environmental sensing to determine the

concentration of pollutants (Section 1.2).

The first synthetic oscillatory circuit built is the repressilator (see Figure 3b.1) (9). The

circuit consists of three genes arranged in a ring configuration, with the protein produced

by each gene repressing production of the protein produced by a downstream gene. If we

use x1, x2 and x3 to represent the concentrations of the three proteins, and for simplicity

of presentation, we assume the circuit is symmetric (i.e., identical parameters for all three
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genes), then the repressilator can be modeled by:

d

dt
x1 =

α

1 + xn3
− x1,

d

dt
x2 =

α

1 + xn1
− x2,

d

dt
x3 =

α

1 + xn2
− x3, (3)

where α represents the maximal protein production rate constant, and n is the cooperativity

of the protein. In the original paper, mathematical analysis indicated that the unique

equilibrium point of this system can become unstable provided α and n are sufficiently

large, leading to a stable limit cycle (9).

Another class of synthetic oscillators are constructed based on a combination of activa-

tion and repression between two genes. As shown in Figure 3b.2, these circuits consists of

protein x1 activating both protein x2 and itself, and protein x2 either repressing only itself

or both x1 and itself ((46) and(54, 58), respectively). A model for these activator/repressor

oscillators is given by

d

dt
x1 =

α1x
n
1 + β1

1 + xn1 + xm2
− x1

d

dt
x2 =

α2x
n
1 + β2

1 + xn1 + cxm2
− x2, (4)

where xi represents the concentration of protein i for i = 1, 2, αi represents maximal

production rate of protein xi, and βi represents its basal production rate. Here, c =

0 for the motif of (46). One can derive parametric conditions under which this system

displays a unique unstable (not a saddle) equilibrium, which guarantees oscillations (59, 60).

Figure 3b.3 shows sample temporal traces of the repressilator and of an activator-repressor

oscillator.

While oscillators found in biological systems are remarkably robust (57), many synthetic

oscillators are sensitive to parametric uncertainty and stochasticity, leading to poor design

predictions (46, 61). Therefore, the community is still actively seeking design principles

for robust oscillators. Such efforts have been facilitated by (i) theoretical advancements

that provide refined conditions for oscillations (e.g., the “secant condition” for cyclic sys-

tems (62)), and by (ii) novel biotechnological tools to robustify circuits (e.g., synchronized

oscillators through cell-cell communication (63), see Section 6.3).

2.3. Speed of response

Feedback may also be used to change the temporal response of a circuit. A simple instance

of this is the use of negative autoregulation to speed up the response time of a genetic

circuit (55). This is useful especially because the speed of response obtained with gene

expression is typically very slow and one of the many design challenges is to obtain faster

response speed, especially for biosensing applications. By contrast, positive autoregulation

slows down the response time compared to that of an unregulated gene (64) (Figure 3c).

3. Feedback control for robustness

Gene expression is inherently a noisy process (67). Theoretical and experimental studies

have demonstrated that negative feedback can effectively increase the signal-to-noise ratio

in genetic circuits (Section 3.1). While many biotechnological studies have attempted to

standardize genetic parts (15, 68), their performance are often uncertain in practice. To

solve this problem from an engineering perspective, negative feedback controllers can be

implemented in vivo to increase circuits’ robustness to model uncertainties (see Section

3.2). Finally, in Section 3.3, we review a synthetic feedback system recently constructed in

E. coli that enables gene expression to robustly track a dynamic input.

10 Qian et al.
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Figure 4

In vivo feedback control increases robustness of synthetic genetic circuits. (a) Transcriptional
negative autoregulation decreases variability in genetically identical cells. (b) Negative feedback enables the
output from a synthetic biofuel production circuit to be insensitive to parameter uncertainties. Compared to
constitutive pump production, a biofuel-responsive pump production circuit is less sensitive to system
parameters such as the promoter strength, kp, allowing productivity to be near-optimal for a wide range of
conditions. (c) Biomolecular integral controller design proposed in (65). The controller uses two species z1 and
z2 to regulate concentration of xo to reference level u. This controller guarantees that the output of a circuit is
robust to constant disturbances and parameter uncertainties. (d) Design of a biomolecular concentration tracker
(66). In the presence of a scaffold protein (input r), HK can phosphorylate RR to become RR∗, which activates
production of the output y. The output contains an anti-scaffold protein that can sequester the scaffold to
reduce the input concentration.

www.annualreviews.org • Programming cells to work for us 11



3.1. Feedback control to attenuate noise

In practice, a population of genetically identical cells always leads to a distribution of pro-

tein molecular counts. Such heterogeneity (i.e., cell-cell variability) reflects the stochastic

nature of gene expression. Both intrinsic and extrinsic noise contribute to stochasticity.

Intrinsic noise arises from the randomness associated with biomolecular processes. For

instance, binding and unbinding between molecules are innately probabilistic events.

Extrinsic noise reflects the fluctuations in cellular components, such as enzyme quantity

and gene copy numbers (67). These noise sources can substantially limit the precision

to which genes are expressed. Furthermore, in large scale circuits, noise propagation can

significantly deteriorate circuit performance or even lead to complete circuit failure, as

has been observed experimentally for a genetic cascade (69) and an oscillator (46). In

multi-stable genetic circuits, such as the genetic toggle switch and the cell-fate decision

network, noise can lead to random transitions among phenotypes (i.e. “stable steady

states”) or to the creation of unexpected ones (32, 70, 71). While noise may be utilized

by natural systems for differentiation or evolution (72), most of the research in synthetic

biology has been focused on reducing heterogeneity in engineered genetic circuits. In

addition to optimizing the design and arrangement of basic genetic parts (see, for example,

(73)), many experimental studies on single gene expression have demonstrated that

negative feedback through transcriptional negative autoregulation is an effective approach

to reduce noise in gene expression (44, 74, 75). These results are consistent with negative

feedback’s leveraged property of noise suppression in engineered systems and with negative

autoregulation’s repeated occurrence in natural gene networks (64).

Negative autoregulation suppresses intrinsic noise. To theoretically study gene

expression in the presence of intrinsic noise, biomolecular reactions are often treated as

discrete state continuous time Markovian processes and modeled by the chemical master

equations (CME) rather than ODEs (19). A simplified model of negative autoregulation

(Figure 4a) consists of the following 4 reactions (R1-R4) that model the mRNA and protein

production and decay (76, 77):

R1 : m(t)→ m(t) + 1; a1(t) = km(x(t)), R2 : m(t)→ m(t)− 1; a2(t) = δm(t),

R3 : x(t)→ x(t) + 1; a3(t) = kpm(t), R4 : x(t)→ x(t)− 1; a4(t) = γx(t),

(5)

where ai(t) is the probability that reaction Ri occurs during the interval (t, t + dt], and m

and x are the mRNA and protein counts, respectively. The fact that protein x represses

its own transcription is described by decreasing Hill-type function km(x) := c/[1 + (bx)n],

where c is the basal transcription rate constant, b increases with the binding affinity between

protein x and its own promoter, and n describes the cooperativity of their binding. The

constant parameters δ, kp and γ represent the transcription rate constant, mRNA decay rate

constant, translation rate constant, and protein decay rate constant, respectively. Assuming

that stochastic fluctuations are small so that km(x) can be linearized about steady state

average protein count E[x̄], the steady state coefficient of variation (CVin) of x due to

intrinsic noise (i.e., noise generated by stochastic firing of reactions R1-R4) can be explicitly

computed (76). In particular, we have

CV 2
in =

Var[x̄]

E2[x̄]
=

kp
(δ + γ)(1 + κ)E[x̄]

, where κ := − E[x̄]

km(E[x̄])

dkm(x)

dx

∣∣∣∣
x=E[x̄]

> 0 (6)
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is the sensitivity of transcription rate km(x) to the protein count x, and can be effectively

regarded as the “feedback strength”. As illustrated in Figure 4a, it is immediate from (6)

that if expression of two genes, gene 1 and gene 2, results in identical steady state average

molecular count on the population level (E[x̄1] = E[x̄2]), then the gene with “stronger”

negative transcriptional autoregulation must have less intrinsic noise (CVin,1 < CVin,2 if

κ1 > κ2).

It is worth noting that (i) the definition of “feedback strength” (κ) in equation (6)

is different from the biological notion of feedback strength, which is often captured by

parameter b in the Hill-type repression function, km(x), and (ii) the comparison is valid

only if two proteins have identical steady state average molecular count (E[x̄1] = E[x̄2]).

Therefore, the claim that increasing the binding affinity of protein x with its own promoter

(i.e parameter b) reduces intrinsic noise (i.e. reduce CVin) is not always true, as noted

theoretically in (78), demonstrated numerically in (79, 80), and verified experimentally in

(75). Detailed parametric studies in (77, 78) demonstrate, however, that increasing binding

cooperativity n can effectively reduce CVin.

Negative autoregulation attenuates extrinsic noise. Experimental studies have sug-

gested that extrinsic noise often affects gene expression more significantly than intrinsic

noise (81). The role of negative feedback on extrinsic noise attenuation is less subtle. This

is because extrinsic fluctuations can be regarded as external inputs, and the ability of a

negatively autoregulated gene to reject these noisy inputs can be inferred from its linear,

deterministic approximation (44). While more rigorous analytical performance evaluation

depends, in principle, on the source of extrinsic noise, it has been shown analytically that

CVex decreases significantly in the presence of negative autoregulation when the extrinsic

noise source is the stochasticity in gene copy number. Using the mathematical tool in-

troduced in (67), the authors of (75) were able to explicitly extract CVin and CVex from

experimental covariance data. They found that, as expected, negative autoregulation is

much more efficient in reducing the effects of extrinsic noise than those of intrinsic one.

The current understanding of the relation between genetic circuit design and noise

characteristics is largely limited to the benchmark problem of negative transcriptional au-

toregulation on a single gene. As our repertoire of synthetic genetic circuits expands rapidly,

only a very limited number of investigations on noise characteristics have been carried out

on system level (70, 76, 80). Developments in this direction are largely hindered by the lack

of analytical tools to characterize the stochastic properties of systems through the CME,

especially in the low molecule count regime. There is a pressing need for analytical under-

standing of stochastic properties, especially as these unfold into the interconnection of I/O

biomolecular processes (see, for example, (82–84)).

3.2. Feedback control for robustness to uncertainty

Robustness to parametric uncertainty is a defining feature of negative feedback systems

(85). Since most biological parameters are either difficult to measure or estimate, or are

highly sensitive to context, negative feedback can be applied to effectively improve circuit

performance despite unknowns. In this Section, we review a few biomolecular controllers

designed toward this goal.

Transcriptional negative feedback reduces sensitivity of biofuel production to
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parameter uncertainty. As illustrated in Figure 2f, genetic controllers can be applied

to improve productivity of biofuel in engineered microbes. In (38), the authors propose to

apply negative feedback to improve output from a synthetic biofuel production circuit. A

major design trade-off in this circuit is the fact that, while increased number of efflux pumps

(p) (i.e. biofuel transporters) improves microbial tolerance to biofuel toxicity, overexpres-

sion of the pumps can lead to reduction in cell growth, reducing population-wide biofuel

output. As a consequence, in order to maximize biofuel production, expression of efflux

pumps must be regulated to an optimal level (38). Although this theoretical optimal pump

expression level can be computed numerically, due to uncertainty in system parameters and

implementation, reaching it through fine-tuning of parameters is impractical. The authors

thus numerically investigate whether a closed loop (CL) circuit, where pump gene transcrip-

tion is activated by the intracellular biofuel level (x), can outperform an open loop (OL)

circuit, where pumps are constitutively expressed, in the face of parametric uncertainty.

Pump expression in the two circuits are modeled respectively by:

OL circuit :
d

dt
p = kp − γp, CL circuit :

d

dt
p = kp

x

x+ λ
− γp, (7)

where kp is the basal pump production rate constant, and λ describes a threshold biofuel

level at which pump production is 50% activated. The negative feedback in the CL circuit

functions in the following way: when cellular biofuel concentration becomes too high, which

hinders cell growth, pump gene production is activated to export biofuel, thus reducing

toxicity to the host cell. The authors found that the CL circuit is much less sensitive than

the OL circuit to uncertainty in almost all system parameters. As illustrated in Figure 4b,

the CL circuit can tolerate a much larger range of parametric uncertainty and still produce

a near-optimal amount of biofuel. Since dealing with parametric uncertainty is a universal

challenge for most biological systems, we expect that this advantage of negative feedback

can be further exploited in other application scenarios.

Realizing integral controllers in living cells. In control design, parametric uncertainty

is most effectively addressed using integral controllers (85). Assuming that the CL system is

stable, integral controllers can drive an unknown plant to reach a constant set-point without

steady state error regardless of constant disturbances. These properties are particularly

appealing to synthetic biology applications due to the unavoidable presence of disturbances

and uncertainties. In fact, integral control motifs have been identified in many natural

biomolecular control systems, including bacterial chemotaxis (86), calcium homeostasis (87),

and yeast osmoregulation (88).

Recently, there has been increasing interest to synthesize integral controllers in vivo

to increase a genetic circuit’s robustness to uncertainty and disturbances (65, 89, 90). In

a theoretical study by Briat et al.(65), the authors propose a type of integral controllers

realizable through simple biomolecular mechanisms (see Figure 4c). The integral controller

consists of two controller species, z1 and z2, whose production rates are proportional to the

concentration of input transcription factor, u, and the regulated output, xo, respectively.

The controller species can bind with each other and degrade together according to the

chemical reaction z1 + z2
θ−→ ∅, where θ is the degradation rate constant. Biomolecular

controllers of this type are named an “antithetic integral controller”, and their dynamics

follow:

d

dt
z1 = u− θz1z2,

d

dt
z2 = xo − θz1z2. (8)

14 Qian et al.



A linear transformation leads to the memory variable z := z1 − z2, whose dynamics is the

integration of tracking error: dz/dt = u − xo. Under the assumption that the closed loop

system is stable, and that the set-point u is reachable by the closed loop dynamics, the

output of the regulated biomolecular process (xo) can reach reference input u independent

of parameters and constant disturbances (Figure 4c). Physically, the dynamics in (8) can

be realized through, for example, RNA interactions (91) and σ/anti-σ factor interactions

(65). This design circumvents many physical difficulties in the implementation of an in vivo

controller, including the lack of direct methods to generate negative signals and to realize

signal subtraction in cells. Furthermore, it is shown in (65) that, even when the system

operates with a small number of molecules (i.e. noisy environment), the expectation of xo
is guaranteed to converge to the desired set-point.

Another type of theoretically proposed biomolecular controllers approximates integral

action through saturation of certain Hill-type or Michaelis-Menten-type kinetics (89, 90).

One such circuit proposed in (89) consists of activation of protein z (a memory variable)

by transcriptional activator xo (output protein), and a saturating amount of protease that

degrades z, resulting in the following dynamics:

d

dt
z = α

xo
xo + k

− γmax
z

z + kdeg
≈ α xo

xo + k
− γmax, (9)

where α is the maximum production rate of z, k is the dissociation constant between xo

and the promoter of z, γmax is the maximum degradation rate constant with saturating

amount of protease, and kdeg is the dissociation constant between the protease and protein

z. The approximation in (9) is valid if z � kdeg. Under this assumption, steady state

output x̄o can be computed from αx̄o/(x̄o + k) = γmax, whose solution is independent of

any parametric uncertainty/disturbance in xo dynamics.

Implementing integral controllers in vivo has tremendous potential to increase robust-

ness of genetic circuits and to modularize their steady state responses (92). While experi-

mental characterization of both types of integral controllers in equations (8) and (9) are still

in progress, further theoretical studies to explore the fundamental performance limitations

and design constraints of these biomolecular controllers are still required (e.g., (91)).

3.3. Robust tracking

Less work has been devoted to design biomolecular controllers that can achieve robust

reference tracking, which is another important design objective in classical control theory.

This is partly because the fidelity and resolution of time-course data in biomolecular systems

have been very limited to date, and, as a consequence, most of the current research in this

field has been focused primarily on using feedback to achieve robust set-point regulation at

the steady state (19). Nevertheless, we envision that feedback systems that track dynamic

biomolecular signals will benefit genetic circuits with more versatile application-oriented

functionalities in the near future.

Design and implementation of a biomolecular concentration tracker is presented by Hsiao

et al. in (66). As demonstrated in Figure 4d, the reference input r to the circuit is the

concentration of a scaffold protein, and the output y of the circuit is the concentration of an

anti-scaffold protein. A synthetic two-component system is utilized to actuate expression

of the output. The two-component system consists of a histidine kinase (HK) donating a

phosphate to the response regulator (RR) to become active RR∗ in the presence of scaffold

r. The active response regulator (RR∗) can then activate expression of the anti-scaffold
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(output y), which binds with the scaffold (input r). The anti-scaffold (output) thus reduces

the ability of the scaffold (input) to sequester HK and RR to activate gene expression,

closing the negative feedback loop. In (66), the authors demonstrate both numerically and

experimentally in E. coli, that the output can track a range of dynamic input, and the

“I/O gain” of the tracker can be tuned efficiently in practice. Further analysis on this

circuit has revealed that this sequestration-based negative feedback mechanism contains an

approximate signal subtractor (93).

4. Feedback control to maintain modularity

Performing modular/layered design is a convenient way to systematically create larger and

more sophisticated systems (12, 94). A critical assumption in any modular design approach

is that the salient I/O properties of a system do not change upon composition with other

systems. Although exceptions exist (95), this modularity property is at the basis of much

of systems and control theory since feedback control has been widely used to preserve a

system’s I/O behavior upon changes in context. Modularity allows to design complex sys-

tems by composing the I/O characteristics of elemental subsystems, without considering

their internal details. Unfortunately, modularity is not a natural property of biomolecular

systems, as I/O properties depend on context, which includes both connectivity to and pres-

ence of other systems. Direct connectivity creates loading effects captured by the concept

of retroactivity. The pure presence of a system can affect the I/O properties of a differ-

ent system because these compete for a limited pool of resources. Here, we review these

system-level problems along with control-theoretic solutions proposed to address them.

4.1. Attenuation of retroactivity

Retroactivity. Referring to Figure 5a, when an upstream system is connected to a down-

stream one, a “signaling molecule” generated in the upstream system becomes involved in

chemical reactions with species of the downstream system. Because of this, the molecule

becomes temporarily unavailable to the reactions that constitute the upstream circuit, re-

sulting in a back effect on the upstream system and a change in its dynamics. This loading

effect on the upstream system is termed retroactivity and can be viewed as a disturbance

signal s applied to the upstream system (96).

As an example, consider the interconnection of an upstream genetic clock (46) to a

downstream genetic circuit (Figure 5a). Letting A and R represent the concentrations of

the activator and repressor proteins of the clock, the isolated clock dynamics can be written

as:

d

dt
A = fA(A,R)− γA, d

dt
R = fR(A)− γR, (10)

where fA and fR are Hill functions describing transcriptional regulations between A and

R, and γ is the protein decay rate constant assumed to be the same for both transcription

factors for simplicity (59). When protein A becomes an “input” to the downstream sys-

tem, it transcriptionally regulates the expression of a gene producing protein D by binding

promoter sites PD in the downstream system. As a consequence, it is no longer available to

the reactions constituting the clock’s dynamics. Assuming that A binds with PD according
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Feedback control modularizes genetic circuits. (a) When an upstream system (e.g., a genetic clock) is
connected to the downstream system (e.g., a reporter gene), a “signaling molecule” generated in the upstream
system, y, binds to sites in the downstream system. The fact that some y molecules are sequestered by the
downstream promoter introduces a loading effect on the upstream system, which can be viewed as a disturbance
signal called retroactivity, s. (b) An insulation device can be placed between the upstream and the downstream
system to allow faithful transmission of signals, despite retroactivity. Such a device attenuates the effect of s on
y to allow y to track u and has small retroactivity to the input r so that u is not changed by loading. (c) A
two-stage insulation device can be constructed from a cascade of two phosphorylation cycles. By increasing the
concentration of phosphatase P and substrate yin, the output stage realizes high-gain negative feedback to
attenuate disturbance s. The low-gain input stage uses time-scale separation to mitigate potential loading effects
imparted by the high-gain stage while ensuring low retroactivity to the input (obtained with low protein z
concentration). (d) In the absence of the insulation device (panel (a)), the clock (upstream) dynamics are
disrupted by loading. With the insulation device, the clock output signal is successfully transmitted to the
downstream system. (e) When gene 2 is induced (by u2) a disturbance is imparted to the expression of gene 1
since production of protein x2 uses ribosomes, reducing their availability to the expression of gene 1. Production
of x1 is thus affected by u2. A gene with negative autoregulation is less affected by such non-regulatory
interactions arising from resource competition.
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c, the dynamics of the connected clock become

d

dt
A = fA(A,R)− γA+

s︷ ︸︸ ︷
k−c− k+APD,

d

dt
R = fR(A)− γR, (11)

where s := k−c − k+ApD is the retroactivity to the output, which, comparing to equation

(10), represents the effect of binding between A and the downstream promoter on the clock

dynamics. As illustrated in Figure 5c, while the isolated clock (s = 0) displays sustained

oscillations, the connected clock no longer oscillates and hence we fail to transmit the clock’s

signal to the downstream system (i.e. D does not oscillate) (97). Retroactivity therefore

breaks modularity and renders layered design difficult.

Effects of retroactivity have been experimentally demonstrated in both genetic circuits

(17, 43, 98) and in signaling circuits reconstructed in vitro (99) and in vivo (100). In

these experiments, depending on the biomolecular processes involved, retroactivity can

appreciably slow-down upstream dynamics or change the steady state I/O response.

Design of insulation devices to mitigate retroactivity. In order for the clock to

transmit its signal to a downstream system despite potentially significant loading, we can

place a special device between the clock and the downstream system, called an insulation

device (Figure 5b). An insulation device should be designed such that loading effects from

the downstream system (i.e., retroactivity to the output, s) minimally affects y (i.e., y

should track u independent of s) and it should have small retroactivity to the input, r, so

that it does not affect the signal, u, that it receives from the upstream system. The result

is that the signal of the upstream system, u, is faithfully transmitted to the downstream

system, despite the possibility of imparting a large load.

If one regards s as a disturbance input to the insulation device, the requirement of

y tracking u independent of s can be formulated as a disturbance attenuation problem.

A well-known control theoretic solution is to use high-gain negative feedback (101). To

illustrate this idea, we consider a negative feedback system subject to a disturbance input

s, reference input z and output y (block diagram in Figure 5c). This diagram leads to

y =
G

1 +KG
z +

s

1 +KG
, (12)

from which limG→∞ y = z/K, which is independent of s. The high-gain negative feedback

system in the block diagram of Figure 5c can be realized through a phosphorylation cycle

(96). As shown in Figure 5c, the cycle takes kinase z as an input to convert the inactive

substrate yin into active substrate y that regulates the downstream system. Phosphatase P

converts y back into yin. In this system, the negative feedback is realized by the phosphatase

P and the gain G is proportional to the total concentrations of phosphatase and substrate

(P and yin, respectively). This design has been experimentally validated in (43).

Implementing high-gain negative feedback through the aforementioned phosphorylation

cycle requires yin to be present in large amounts. This design requirement creates a major

trade-off as large yin imparts a significant load to the input kinase, creating large retroac-

tivity to the input (r) (102). To overcome this limitation, one can design a cascade of

two phosphorylation cycles (Figure 5c). The output stage is designed as before and is a

high-gain stage. The input stage, in contrast, is designed to have a lower concentration of
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substrate zin and phosphatase P∗ (low-gain output stage). Despite low substrate and phos-

phatase amounts, the input stage can still effectively attenuate retroactivity to its output

arising from z binding to a large amount of yin. This is because the dynamics of the phos-

phorylation cycle are much faster than protein expression, which determines the time-scale

of the input to the insulation device (e.g., A in Figure 5c). In fact, a general theoretical

result in (103) states that the temporal effects of retroactivity can be attenuated by any

biomolecular system with sufficiently fast dynamics compared to that of the input, which

is consistent with fundamental studies on the relationship between high-gain feedback and

time scale separation (101). In (17), a two-stage insulation device designed based on the

above principle was constructed in yeast and called the load driver, which results in complete

retroactivity attenuation (Figure 5d).

4.2. Mitigation of resource competition effects

Resource competition introduces non-regulatory interactions among genes. An

important source of context dependence that has received much attention recently is the

competition for transcriptional and translational resources/machinery, chiefly for RNAPs

and ribosomes. These resources are produced by the host cell and their total concentrations

can be regarded as conserved under constant growth conditions (104). While in general,

determining the exact limiting factor (e.g., RNAPs or ribosomes or both) for a genetic

circuit depends largely on the type of host cells and their growth conditions (105), many

experiments reveal that resource competition effects are most significant at the translational

level in bacteria E. coli, and, consequently, ribosome competition is the major limiting factor

(106–108). Non-regulatory interactions due to ribosome competition can be exemplified by

considering the simple genetic circuit in Figure 4e composed of two nodes: node 1 producing

protein x1 and inducible node 2 producing protein x2 under the control of transcription

factor u2. On the transcription level, the dynamics of mRNAs in the two nodes (m1 and

m2) can be written as

d

dt
m1 = α1 − δm1,

d

dt
m2 = α2F2(u2)− δm2, (13)

respectively, where δ is the decay rate constant, αi (i = 1, 2) is the transcription rate

constants for node i. The extent to which node 2 is activated by input u2 is captured

by increasing Hill function F2(u2). Translation rate of m1 and m2 is proportional to the

amount of free ribosomes R available in the host cell, leading to the following dynamics:

d

dt
x1 = β1

m1R

κ1
− γx1,

d

dt
x2 = β2

m2R

κ2
− γx2, (14)

where for i = 1, 2, βi is the translation rate constant, κi is the dissociation constant between

mi and free ribosomes, and γ is the protein decay rate constant. Taking into account the

conservation of ribosomes Rt = R + m1R/κ1 + m2R/κ2, where Rt represents the total

concentration of ribosomes, and miR/κi represents the concentration of ribosomes bound

to node i, the free concentration of ribosomes can be found to be R = Rt/(1 + m1/κ1 +

m2/κ2). If we further assume that mRNA dynamics are much faster than protein dynamics

(19, 64), and set equations (13) to quasi-steady state, the state of each node under ribosome

competition can be represented by the following protein dynamics:

d

dt
x1 =

T1

1 + J1 + J2F2(u2)
− γx1,

d

dt
x2 =

T2F2(u2)

1 + J1 + J2F2(u2)
− γx2, (15)
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where lumped parameters Ti := αiβiRt/(δκi) represents the maximum production rate

constant of protein i, and Ji := αi/(κiδ) is the resource demand coefficient of node i,

representing its capability to sequester ribosomes. By equation (15), the dynamics of node

1 (x1) becomes coupled to the input of node 2 (u2), and, as a consequence, expression of

two nodes becomes coupled. In addition, from equation (15), steady state concentrations

of the two proteins x̄1(u2) and x̄2(u2) follows a linear relationship (see Figure 4b), called

an “isocost line”, a phenomenon that has been verified experimentally (107, 109). Such

unintended coupling between nodes in a genetic circuit largely hinders our capability to

predict design outcomes.

More generally, the dynamics of node i in an n-node genetic circuit can be written as

d

dt
xi =

TiFi(ui)

1 +
∑n
k=1 JkFk(uk)

− γxi, (16)

and as a consequence of equation (16), expression of every node is coupled to one another,

largely demolishing circuits’ modularity. This model has been experimentally validated in

(110) and illustrates how the effective interactions in a genetic circuit can be determined by

the “superposition” of intended regulatory interactions and non-regulatory interactions due

to resource competition. In particular, the experiments of (110) illustrate this superposition

of regulatory and non-regulatory interactions on a genetic activation cascade, whose I/O

response can significantly change due to resource competition.

Mitigation of resource competition effects through negative feedback. For each

node i in model (16), we can regard resource demand by other nodes in the circuit as

disturbances di :=
∑
k 6=i JkFk(uk) that affect the I/O response from reference input ui

to output xi. Similar to its function in electrical engineering (42), negative feedback can

be exploited to modularize the I/O response of node i. This idea has been theoretically

explored in (111) and experimentally investigated in (109) for the simple circuit in Figure

5e. In particular, by engineering the product of gene 1 (x1) to repress itself, at steady state,

the extent to which x̄1 is coupled to x̄2 decreases. It is yet unclear if other biomolecular

feedback controllers, such as the integral controllers in Section 3.2, can mitigate the effects

of resource competition more efficiently (92, 111), and whether the controller can be

used to robustify genetic circuits to other forms of competition such as competition for

degradation machinery (112). More importantly, since feedback controllers do not increase

a host cell’s capability to produce proteins, but instead increase demand by the regulated

genes in face of resource limitations, scaling up this strategy to include multiple nodes with

feedback may reach fundamental design trade-offs that remain to be explored (92).

Circuit-host interaction. When resource demand by a synthetic circuit becomes too

large, the physiology of the host cell may be affected (106, 108, 113), resulting in another

form of context dependence known as host-circuit interaction, which is not accounted for

in equation (16). Host-circuit interaction arises from growth-modulated feedback, where

synthetic circuit expression retards host cell growth and this, in turn, affects synthetic circuit

expression, leading to unexpected circuit behaviors (113, 114). While phenomenological

models describing the effect of synthetic circuit expression on host cell growth exist, and

preliminary experiments using negative feedback to robustfy circuits’ response to changes

in cell physiology are promising (106), the mechanistic link between host cell growth and

synthetic circuit expression remains largely unexplored. Answering this question in the
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future may allow implementation of a central controller that interacts with the host cell to

optimize resource production, distribution and utilization (115, 116), a strategy often used

to solve resource allocation problems in engineering (117).

5. Feedforward control for compensation and temporal response shaping

In a classical control design set-up, feedforward compensators are commonly designed to

complement feedback controllers, especially when a model of the plant to be controlled

and/or the disturbance to be attenuated is known (85). One way this is accomplished

is by the incoherent feedforward loop motif (Figure 6). There is strong evidence that

natural systems may use feedforward control to compensate for uncertainty since incoherent

feedforward loops are highly prevalent in natural systems in bacteria and yeast cells (118).

The incoherent feedforward loop has been shown to be used by natural biological systems

in a variety of settings including microRNA degradation of mRNA (119), insulin release in

beta cells (120), and robustness to temperature disturbances (121).

The standard topology of an incoherent feedforward motif consists of three nodes and

two forward paths from the input to the output in which the gains on the paths have

opposite signs. These opposite signed gains give the incoherent feedforward loop its name.

Due to this incoherent nature, under constant input disturbances, one path compensates for

the input transmitted by the other path, allowing the output of the motif to approximately

reject constant disturbances (Figure 6). This incoherent feedforward motif is much more

u y

IFFL

time
time

Figure 6

The incoherent feedforward loop. If the two branches are well balanced, the system
rejects a step distrubance input u.

frequent in natural systems than the expected prevalence in a random network (11). This

discovery prompted further research into motifs highly prevalent in natural systems (122)

and, specifically, into special properties of incoherent feedforward loops that help explain

this prevalence (123–125). For example, the incoherent feedforward loop acts as a pulse

generator in response a step input (122). The output initially increases in response to

the step input, then decreases to approximately the original steady state as the two paths

oppose each other, generating a pulse from the step input. Additionally, under appropriate

conditions, it has been shown that the response of an incoherent feedforward loop may

only be sensitive to the multiplicative factor (fold) by which the input is increased and not

to the absolute value of the input. This property has been termed fold change detection

(125). It has also been shown that incoherent feedforward loops that perfectly adapt to

constant or step inputs contain an integrator which may be made explicit through a change

of coordinates (126). These studies represent a reverse engineering approach for natural

systems for increased understanding of the biological processes.
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Due to the investigation of feedforward motifs in natural systems, researchers have used

these motifs to forward engineer synthetic systems with improved disturbance compensa-

tion. For example, synthetic DNA encoding a circuit design is usually introduced in the

host cell in the form of a plasmid (refer to Figure 1a); however, the copy number of the

plasmid can be highly variable from cell to cell, leading to high variability in the concen-

tration of expressed proteins. The use of an incoherent feedforward loop architecture has

been shown to mitigate the effect of plasmid copy number variability on the concentration

of proteins encoded by the plasmid (45). In particular, in this circuit design, the output

protein expressed by the plasmid was placed under negative regulation by a regulator pro-

tein, leading to an incoherent feedforward loop with input the plasmid copy number and

output the concentration of the plasmid protein.

The design of an incoherent feedforward loop for disturbance compensation is appealing

as it is often simpler to build than a feedback regulation mechanism. However, for com-

pensation to occur, the two branches of the feedforward motif need to be “well balanced”.

This translates into specific choices of parameters which are hard so set in practice. Novel

designs that combine feedback with feedforward may be particularly useful for enhancing

the robustness of incoherent feedforward architectures to parameter variations.

6. Coordination of multi-cellular behavior

In recent years, multi-cellular coordination has become a new frontier in synthetic biology.

Multi-cellular coordination can be realized through cell-cell communication, in which small

molecules synthesized in “sender” cells diffuse through the cell membrane to regulate ex-

pression of genetic circuits in “receiver” cells, a mechanism well-known in bacterial quorum

sensing (127). While the biomolecular reactions that carry out computation and actuation

still take place in individual cells, cell-cell communication enables each cell to have access

to the “states” of its neighbors and then adjust its own activity accordingly to affect the

collective population behavior. The system level architecture of multicellular coordination

highly resembles that of cooperative control (128).

The capability to program cellular behvaiors collectively leads to genetic circuits with

novel spatiotemporal functionalities, including population controllers (129, 130), edge de-

tectors (131), synchronized oscillators (63) and spatial pattern generators (132, 133). These

circuits can benefit future applications of synthetic biology. In addition, multi-cellular co-

ordination, combined with intracellular feedback control, can reduce heterogeneity of gene

expression in the population (134). Finally, multi-cellular coordination among different cell

strains allows us to engineer “distributed genetic circuits”, where the burden of sensing,

computing and actuation are distributed to multiple cell strains (135–137). In biological

terms, the symbiotic coexistence of multiple cell strains is called a consortium, which can be

used to increase productivity in biosynthesis applications (135, 138). A distributed genetic

circuit can also circumvent, in principle, the lack of modularity often found in circuits that

operate at the single-cell level, such as unwanted structural interactions (16), retroactivity

(96) and resource competition (110). In the following sections, we review these aspects of

multicellular coordination in more detail.
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Multi-cellular coordination circuits. (a) The population control circuit introduced in
(129). Since each synthesize diffusible small molecule AHL, an increase in cell density
results in an increase in intercellular AHL concentration. Increased AHL triggers
expression of a killer gene to limit population growth. (b) Population dynamics are
tunable through the degradation rate of LuxI protein. Strong degradation leads to “weak”
cell-cell communication, leading to oscillatory population dynamics. (c)-(d) By coupling
the population sensing circuit with bacteria motility control, a population of engineered
bacteria can form spatial patterns autonomously (133). (e)-(f) Cell-cell communication
synchronizes a population of genetic clocks (63). (g) Multi-cellular coordination enables
distributed computation in genetic circuits (137).

6.1. Population control

You et al. constructed one of the earliest genetic circuits that uses multi-cellular coordina-

tion to maintain the density of E. coli at a desired level (129) (see Figure 7a). The circuit

realizes cell-cell communication through the well-characterized quorum sensing system in

the marine bacterium Vibrio fischeri consisting of the proteins LuxI and LuxR (127). The

LuxI protein is constitutively produced to catalyze the synthesis of small diffusible molecule
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acyl-homoserine lactone (AHL), which can bind with a constitutively produced LuxR pro-

tein to activate a killer gene, leading to cell lysis. Since AHL diffuses freely across the

membrane of the cell, its intracellular concentration reflects its intercellular level, and can

therefore be regarded as a proxy for population size. An increase in cell population increases

AHL synthesis, and as a result, increases intracellular AHL concentration, activating the

killer gene to decrease population size and closing the feedback loop. Experimental results

in (129) demonstrate that population size settles to a constant level under various growth

conditions. In a more recent study (130), Scott et al. constructed a similar population con-

trol circuit in Salmonella typhimurium bacterium, and demonstrated, both numerically and

experimentally, that the degradation rate of LuxI is a key bifurcation parameter that con-

trols bacteria population dynamics. As shown in Figure 7b, when LuxI degrades rapidly,

the amount of AHL produced in each individual cell is small, leading to weak “cell-cell

communication strength” and oscillatory population dynamics. Conversely, communica-

tion strength is strong when LuxI degradation is slow and more AHL is produced in each

cell, enabling the population to reach a consensus (i.e., population size reaches steady state).

While the aforementioned circuit regulates population of a single cell strain, a num-

ber of studies have emerged that attempt to control the population dynamics of multiple

cell strains/types (e.g., microbial consortia) (130, 139, 140). These studies increase our

understanding of natural ecosystems (130, 139), and are critical to the implementation of

distributed genetic circuits (140), which is a promising research direction that we shall dis-

cuss in Section 6.4. Maintaining a population of metabolically competing species remains a

grand-challenge, however, as species with growth deficiencies are often taken over by those

with growth advantages, and population dynamics are often oscillatory and sensitive to

parameters and initial conditions (141, 142). Promising results have recently appeared in

(130), in which the authors experimentally demonstrated that the population ratio of two

strains can be maintained by a “decentralized” population control strategy, where each cell

strain is equipped with a population control circuit (similar to that in Figure 7a). This

control strategy, as well as others that involve communication and regulation among strains

(130, 140), can significantly improve our ability to construct multi-cellular genetic circuits

with more functionalities. However, an understanding of the feedback control mechanisms

that may overcome current challenges in stably and robustly maintaining a consortium

with two or more strains is largely lacking. A control theoretic approach may be critical to

mature such an understanding.

6.2. Pattern formation

Synthetic pattern formation systems could lay the foundation for future biomaterials that

self-organize into patterns of biological entities (143). One of the earliest pattern formation

circuits was developed by Basu et al. (132). The pattern forms on a plate containing a

spatially homogeneous population of “receiver cells” surrounding “sender cells” placed at

the center of the plate. The “sender cells” produce diffusible AHL constitutively, resulting

in a spatial AHL concentration profile on the plate that reduces radially from the center.

The “receiver cells” contains an incoherent feedforward circuit that takes AHL as input

and produces a fluorescence reporter as output. The feedforward circuit is tuned to pro-

duce a biphasic I/O dose response curve, and therefore, fluorescence output is produced at

intermediate AHL concentrations, forming a fluorescence ring on the plate.

The circuit in (132), however, is unable to produce a pattern autonomously, in that a
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predefined spatial concentration profile of AHL produced by the “sender cells” is required.

More recently, Liu et al. (133) constructed an autonomous pattern formation circuit by

coupling a LuxR/LuxI population density-sensing module with a motility-control module,

which includes the gene CheZ in the E. coli chemotaxis pathway (see Figure 7c). In low cell

density regions, the concentration of AHL is low, and consequently, cheZ expression drives

the flagellar motor to enable the cell to move roughly in a straight line. Alternatively, in

high cell density regions (high AHL concentration), the flagellar motor spins in clockwise

direction, causing the cell to tumble (19), which disables its motility. As a result, spatial

oscillation occurs, and cells aggregate into stripe patterns.

6.3. Reduction of cell-cell variability

Through population averaging, multi-cellular coordination can serve as an effective tool to

reduce population level heterogeneity in gene expression. In (134), Vignoni et al. theoreti-

cally studied a circuit consisting of negative autoregulation and cell-cell communication. In

particular, luxI gene expression is under transcriptional repression by LuxR:AHL complex.

A saturating amount of LuxR is produced constitutively, and AHL synthesis is catalyzed

by protein LuxI, forming an effective negative feedback loop around the LuxI production

processes. Since AHL diffuses freely across the membrane, luxI expression depends, in

principle, on the intercellular concentration of AHL, which reflects average LuxI expression

level across the population. The authors demonstrate through a combination of analytical

study and numerical simulations, that this control scheme can effectively reduce steady

state gene expression heterogeneity. This approach may find applications in biosensing,

where increasing the signal-to-noise ratio is highly desirable (34).

Reducing population heterogeneity is especially crucial for multi-stable and oscillatory

circuits. Cell-cell variation may lead to noise-induced transition among phenotypes (i.e.

stable steady states) in a multi-stable circuit (32, 71), jeopardizing its desired functionality.

Koseska et al. numerically studied a population of genetic toggle switches, and found

that coupling of switches through small molecules enhances precision of cell decision (144).

Similarly, Danino et al. used cell-cell communication to reduce heterogeneity in a population

of genetic clocks (i.e. clock synchronization) (63). As shown in Figure 7e, each cell in

the population contains a synthetic genetic activator/repressor clock (46). The diffusible

molecule AHL has dual functions: enabling intracellular transcriptional activation that

gives rise to oscillatory dynamics on single cell level, and mediating cell-cell communication

to synchronize the genetic clocks. Experimental results in (63) demonstrated that the

synchronized genetic clocks can produce sustained oscillation at the population level (Figure

7f). This contrasts earlier experiments of decoupled genetic clocks, where population level

oscillation is damped out as cells in the population become progressively out of phase due

to noise (46).

6.4. Distributed genetic circuits

Cell-cell communication provides a promising tool to realize distributed genetic computa-

tion. The idea is to split functional modules in a genetic circuit into multiple cell strains, and

coordinate strain behavior through diffusible small molecules. This is an appealing design

concept in that it exploits the cell membrane to add another layer of compartmentalization,

and therefore increases circuits’ modularity. In fact, distributed genetic circuits can circum-

vent several context-dependent problems found in single-cell circuits, including retroactivity
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and resource competition. Preliminary experimental results have demonstrated the poten-

tial of this distributed approach (136, 137). For example, in (137), Tamsir et al. built a

genetic XOR gate using a composition of four NOR and OR gates that are distributed into

four different E. coli strains (Figure 7g). These distributed designs are particularly appeal-

ing for biosynthesis applications, in which the employment of multiple microbial strain can

help divide labor and work cooperatively to increase productivity (135, 145).

Nevertheless, a number of technical challenges remain before this technology turns to

maturity (146). A major system level hurdle lies in the fact that “communication strength”

(i.e. concentration of communicating small molecules) is dependent on population size. As

cells grow, robust population control for each cell strain needs to be devised to guarantee

reliable signal transmission (see Section 6.1 for discussion on population control). Secondly,

an appreciable amount of delay may occur during signal transmission (i.e. diffusion), which

may deteriorate circuits’ temporal response or even cause instability (85). The solution to

both problems, may benefit significantly from a control theoretic approach, since closely

related problems, such as multi-agent coordination in the presence of communication de-

lay, have been addressed in other engineering contexts (128). Meanwhile, exploration and

characterization of orthogonal cell-cell communication modules in bacteria (147) and eu-

karyotic cells (148, 149) remain preliminary, and more inputs from the biological engineering

community is required to expand the tool box.

We envision that at least two control layers are required in future genetic circuits.

“Low level” intracellular controllers modularize behavior of functional modules, distributed

to distinctive cell strains, allowing their I/O behaviors to be robust to external disturbances

and noise (see Section 4). “Higher level” intercellular controllers can then be implemented

to regulate population size of various strains and coordinate strains’ collective behaviors.

This layered control architecture may enable synthetic biology to obtain a higher degree of

modularity, facilitating design and implementation of more sophisticated circuits.

7. Summary and outlook

In this review, we discussed how control design principles have permeated synthetic biology

to tackle fundamental problems encountered when programming cells to work for us: de-

signing circuit’s dynamics (Section 2), improving circuit’s robustness to unknowns (Sections

3,5), aiding modular and layered design (Section 4), and programming the emergent behav-

ior of cell populations (Section 6). While the field of synthetic biology has gone through

quick progress and has clearly demonstrated its remarkable potential in ground-breaking

applications (Section 1), a number of significant challenges still remain. Many of these chal-

lenges are in essence “system-level” problems and, as such, can most likely be addressed by

a control theoretic approach.

The conceptually appealing, yet perhaps overused, analogy between a programmed cell

and a robot breaks down as soon as the physical properties of biomolecular systems in

living organisms are considered. Although we can clearly design the qualitative dynamics

of simple functional modules (e.g., oscillators and multi-stable systems), the spectrum of

functions that can be realized is still unclear, and especially, the extent of achievable preci-

sion for more quantitative design. Imposing strict analogies with engineering, chiefly with

electrical engineering, may be misleading due to a number of factors, including the intrinsic

(and most likely useful) nonlinearity and stochasticity of biomolecular systems. Further-

more, while basic components are well characterized in electrical engineering, the core I/O
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biomolecular processes (e.g., transcriptional regulation, protein-protein interactions, RNA-

RNA interactions) that are used in synthetic biology are plagued by 10x-100x uncertainty

in key parameters. These may also dramatically change with temperature, pressure, cell

metabolism, and the specific circuit’s context (Section 4), yet, nature’s design strategy is

remarkably robust to these sources of variability and may actually exploit them in its favor.

An interesting aspect of the field is that there is rapid development of new biological

tools that continuously expands the set of core processes that can be used for design (e.g.,

CRISPR-based regulators (14)). Compared to this rapid pace, theory is lagging behind

and new processes become used before they are systematically characterized. There are

significant challenges to systematic characterization, which include system identification

techniques that can handle nonlinear parameterizations typical of biomolecular processes,

the lack of fast and precise sensors, and the small set of sensors that can be used in a single

experiment. At the same time, circuit design techniques that can produce reliable and

repeatable outcomes despite all the unknowns that plague single components are largely

lacking. Feedback design has been instrumental in this respect to obtain, for example,

repeatable performance of amplifiers despite 5x variations in their components (42). The

key to obtain this is to compare the actual output of the system to the desired one, under

the assumption that we have an accurate and precise sensor for the output. In synthetic

biology, sensors are inaccurate, imprecise, and slow, and the uncertainty in components

that we face is much larger than that found in engineered systems.

At the system level, a modular and layered design approach is appealing to an engi-

neering mind, yet it presents significant challenges. As described in Section 4, even with

components that are well-characterized in “isolation”, a system’s behavior becomes unpre-

dictable due to context dependence (16, 94). Context dependence leads to I/O characteris-

tics of core processes that widely change when the context (i.e., circuits around them and

cell growth) changes. This results in a lengthy, ad hoc, and combinatorial design process,

significantly limiting our capability to scale up circuit’s size and sophistication. In addition

to the remarkable advances in the biological engineering community towards minimizing

interference among basic parts (for example, DNA promoters and terminators) (16), engi-

neering in vivo biomolecular controllers provides a promising path towards making the I/O

behavior of genetic circuits independent of context (Section 4).

At the multi-cellular level, programming the emergent behavior of a bacterial population

is still a grand-challenge (Section 6.4). Although the apparent analogy with cooperative and

decentralized control problems is appealing, the large number of cells (e.g., on the order of

trillions in our guts), communication delay due to diffusion, nonlinearity in “agent dynam-

ics” and spatial heterogeneity make traditional control theoretic formulations inapplicable.

Interestingly, and as illustrated in Section 6, experimentalists are already implementing

multi-cellular computation and extensively using feedback control for coordination. How-

ever, these designs often miss theoretical guarantees, have poor robustness properties, and

are not reliable. More generally, the key question in any multi-cellular computation of how

to robustly maintain desired cell populations in multi-strain consortia remains largely open.
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110. Y. Qian, H.-H. Huang, J. I. Jiménez, and D. Del Vecchio, “Resource competition shapes the

response of genetic circuits,” ACS Synth. Biol., vol. 6, no. 7, pp. 1263–1272, 2017.

111. A. Hamadeh and D. Del Vecchio, “Mitigation of resource competition in synthetic genetic

circuits through feedback regulation,” in Proceedings of the 53rd Conference on Decision and

Control, pp. 3829–3834, 2014.

112. C. McBride and D. Del Vecchio, “Analyzing and exploiting the effects of protease sharing in

genetic circuits,” in Proceedings of the 20th World Congress of International Federation of

Automatic Control (IFAC), pp. 11411–11418, 2017.

113. S. Klumpp, Z. Zhang, and T. Hwa, “Growth-rate dependent global effect on gene expression

in bacteria,” Cell, vol. 139, pp. 1366–1375, 2009.

114. C. Tan, P. Marguet, and L. You, “Emergent bistability by a growth-modulating positive

feedback circuit,” Nat. Chem. Biol., vol. 5, no. 11, pp. 842–848, 2009.

115. M. Kushwaha and H. M. Salis, “A portable expression resource for engineering cross-species

genetic circuits and pathways,” Nature Communications, vol. 6, p. 7832, 2015.
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F. Posas, and R. Solé, “Distributed biological computation with multicellular engineered net-

works,” Nature, vol. 469, no. 7329, pp. 207–211, 2011.

137. A. Tamsir, J. J. Tabor, and C. A. Voigt, “Robust multicellular computing using genetically

encoded nor gates and chemical ‘wires’.,” Nature, vol. 469, no. 7329, pp. 212–5, 2011.

138. K. Zhou, K. Qiao, S. Edgar, and G. Stephanopoulos, “Distributing a metabolic pathway among

a microbial consortium enhances production of natural products,” Nat. Biotechnol., vol. 33,

no. 4, pp. 377–383, 2015.
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