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Abstract— Gene circuits share transcriptional and trans-
lational resources in the cell. The fact that these common
resources are available only in limited amounts leads to un-
expected couplings in protein expressions. As a result, our
predictive ability of describing the behavior of gene circuits is
limited. In this paper, we consider the simultaneous expression
of proteins and describe the coupling among protein concentra-
tions due to competition for RNA polymerase and ribosomes.
In particular, we identify the limitations and trade-offs in
gene expression by characterizing the attainable combinations
of protein concentrations. We further present two application
examples of our results: we show that even in the absence of
regulatory linkages, genes can seemingly behave as repressors,
and surprisingly, as activators to each other, purely due to the
limited availability of shared cellular resources.

I. INTRODUCTION

One of the major bottlenecks in systems and synthetic
biology is context-dependence [1], as it hinders our ability
to accurately predict the behavior of complex systems from
that of the composing modules [2]. This lack of modularity is
particularly important when engineering biological systems
using smaller components [3], as it often leads to a lengthy
and ad hoc re-design process every time the context changes
[4]. Context-dependence arises due to a number of different
factors: unknown regulatory linkages; loading effects due to
known regulatory interactions between components, a phe-
nomenon known as retroactivity [5], [6]; metabolic burden
[7]; cell growth [8]; and competition for shared cellular
resources [9].

In this paper, we focus on the effects of competition for
transcriptional and translational resources on gene expres-
sion. Since these resources are available only in limited
amounts, they have to be reallocated every time new genes
are introduced into the cell, or when the activity of already
present genes changes. Due to the reallocation of these
common resources, the over-expression of one gene can
affect the growth rate of the cell [8], and it can decrease the
expression of other genes [10]. As a result, the expression
of different genes become coupled, even in the absence of
regulatory linkages among them. To accurately predict and
control the behavior of gene circuits, we must determine the
distribution of shared resources, that is, the cellular economy
of gene expression.
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Here, we characterize how the expression of different
genes become coupled due to competition for RNA poly-
merase (RNAP) and ribosomes. We focus on RNAP and
ribosomes as their availability is considered to be the major
limiting factor in transcription [11] and translation [10],
respectively. We prove that due to the limited availability of
these cellular resources, the attainable protein concentrations
lie within the intersection of simplexes, and we show how
these simplexes depend on various biochemical parameters,
such as ribosome binding site (RBS) strength and DNA copy
number. Building upon our results, we show that even in the
absence of regulatory linkages, genes can seemingly repress
and activate each other, as a result of the reallocation of
limited resources. In particular, we first consider two genes
and show that activating one decreases the expression of
the other. We further demonstrate that this effect can be
interpreted employing isocost lines, a tool originating from
microeconomics to describe the affordable combinations of
different products having only a limited budget. Second,
in the case of three genes, we show that increasing the
production of one protein can surprisingly increase the
concentration of a second one by reallocating resources from
the expression of the third protein.

Our work is closely related to recent efforts investigating
the effects of shared cellular resources on gene circuits. In
particular, in [12] and [13] the authors detail the effects of
the limited availability of ribosomes causing translational
crosstalk, a phenomenon verified experimentally in [14] in
cell-free systems. A general framework for studying the
effects of resource competition is presented in [15] using
Metabolic Control Analysis [16], yielding response coeffi-
cients that describe local flux sensitivities in a gene network.
Our work complements these results as we consider the
role of both RNAP and ribosomes to characterize the global
limitations and trade-offs in protein expression for n genes.
Some of these results have been validated in vivo for two
genes [17].

This paper is organized as follows. In Section II, the
system of interest is introduced, together with the motivation
and research question: Having n genes, what are the limi-
tations and trade-offs in gene expression due to competition
for shared cellular resources? In Section III, we determine
the attainable protein concentrations and characterize how
various biochemical parameters affect the interdependence in
gene expression. In Section IV, we present two implications
of the limited availability of RNAP and ribosomes on gene
expression. Finally, we conclude our results and present
future research directions in Section V.



II. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a system in which n genes are expressed. In
particular, each gene is first transcribed by RNAP to mRNA,
then mRNA is translated by ribosomes to protein (Fig. 1A).
Furthermore, we focus on the case when the transcription
of each gene is regulated by a transcription factor (TF) as
follows. In the case of gene i expressing protein pi, TF ui
first binds to the empty promoter b∗i forming the promoter
complex bi. Then, the binding of RNAP x to bi can form
the transriptionally active promoter complex ci, resulting
in the production of mRNA mi at rate γi (encompassing
the elongation reactions). Finally, mRNA decays at rate δi.
Consequently, the reactions describing the transcriptional
processes for gene i are as follows:

ui+ b∗i
ζi−⇀↽−
χi

bi, bi+ x
κ+
i−−⇀↽−−
κ−i

ci, ci
γ1−→ bi+ x + mi, mi

δi−→ ∅.

Translation of mi is initialized by the ribosome y binding
to the RBS of the mRNA mi, forming the translationally
active complex di. The degradation of mRNA when bound
to the ribosome occurs with rate constant aiδi where 0 <
ai ≤ 1 (ai → 0 represents the case when the ribosome-
bound mRNA is protected from degradation, whereas ai = 1
models the scenario when ribosomes provide no protection
against degradation, which is considered in what follows).
Protein pi is degraded at rate λi, whereas elongation and
production are lumped together in one step with effective
production rate constant πi. Therefore, the reactions describ-
ing the translation processes for gene i are given by

mi+y
k+i−−⇀↽−−
k−i

di
aiδi−−→ y, di

πi−→ mi+y+pi, pi
λi−→ ∅.

Consequently, the corresponding differential equation model
for i = 1, 2, . . . , n is given by

ḃi = (ζiuib
∗
i − χibi)−

(
κ+
i xbi − κ

−
i ci
)

+ γici,

ċi =
(
κ+
i xbi − κ

−
i ci
)
− γici,

ṁi =γici − δimi −
(
k+
i miy − k−i di

)
+ πidi,

ḋi =
(
k+
i miy − k−i di

)
− πidi − aiδidi,

ṗi =πidi − λipi.

(1)

A. RNAP and Ribosome Demand at the Steady State

Introduce the dissociation constants κi = (κ−i + γi)/κ
+
i

and ki = (k−i + πi + δi)/k
+
i for i = 1, 2, . . . , n. Given that

protein production and decay are much slower than binding
and unbinding reactions [18], we have γi � κ−i and πi, δi �
k−i , so that κi ≈ κ−i /κ

+
i and ki ≈ k−i /k

+
i . The stronger

the binding of RNAP to the promoter, the smaller κi, and
similarly, the stronger the binding of ribosome to the RBS,
the smaller ki. Next, define

hi =
γiηi
δi

, qi =
πi
λi
hi and µi =

χi
ζi
, (2)
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Fig. 1. Genes compete for transcriptional and translational resources. (A)
DNA is transcribed into mRNA by RNAP, which is then translated to protein
by ribosome. (B) The sharing of limited resources couples the expression
of genes, even in the absence of regulatory linkages, as a result of loading
(red) imposed by each gene on the pool of shared resources. The RNAP
sink models the non-specific binding of RNAP (the non-specific binding of
ribosomes could be treated similarly, neglected here to simplify exposition).

where µi is the dissociation constant of the TF ui to the
promoter of gene i. Furthermore let

εi =

ui

µi

(
1 + x

κi

)
1 + ui

µi

(
1 + x

κi

) , for i = 1, 2, . . . , n. (3)

Assuming that DNA concentration is constant [19], we have
that ηi = b∗i + bi + ci, where ηi is the total concentration of
the promoter of gene i. We further have εi = (bi + ci)/ηi,
so that εi ∈ [0, 1) is the fraction of the promoter of gene i
activated by ui. At the steady state of (1), we have

ci = εiηi
x

x+ κi
, di = εihi

x

x+ κi

y

y + ki
, (4)

whereas the concentration of protein pi is

pi = εiqi
x

x+ κi

y

y + ki
, for i = 1, 2, . . . , n. (5)

We call ci and di in (4) the RNAP and ribosome demand of
gene i at the steady state, respectively, as they represent the
concentration of RNAP and ribosomes bound to the promoter
and mRNA, respectively. The protein concentrations pi for
i = 1, 2, . . . , n in (5) are implicitly coupled as the free
concentration x and y of RNAP and ribosomes, respectively,
depend on the demand by the genes (Fig. 1B), as we detail
in the next section.



B. Modeling the Limited Availability of RNAP & Ribosomes

According to [20], RNAP can be divided into four main
categories: immature RNAP, free RNAP, and RNAP bound
specifically (and transcribing) and non-specifically to the
chromosome. Based on [21], the cell has approximately 1500
RNAP molecules (xT = 1500nM), among which about 200
are actively transcribing endogenous genes (xS = 200nM)
at low growth rate. Furthermore, [20] suggests that the ratio
of immature RNAP is negligible, and the remaining 1300
molecules are partitioned as follows: 100 of them are free
(x = 100nM), whereas 1200 are non-specifically bound
(xN = 1200nM). Consequently, the conservation law for
RNAP without the additional genes of Fig. 1B is given by

xT = x+ xS + xN . (6)

As for ribosomes, [21] reports that the number of ribo-
somes per cell is 6800 (yT = 6800nM), 80% of which
is active, that is, approximately 5500 (yS = 5500nM) at
low growth rate. According to [22], the concentration of
free ribosomes is approximately 15%, so that the ratio of
non-specifically bound ribosomes and immature ribosomes
is about 5%. This is negligible compared to the fraction of
active and free ribosomes, unlike in the case of RNAP. For
simplicity, we treat this last 5% as if they belonged to the
pool of free ribosomes (so that we slightly under-estimate
the effect of competition for ribosomes). As a result, the
conservation law for ribosomes without the additional genes
of Fig. 1B is given by

yT = y + yS . (7)

In [17], several exogenous genes are constitutively ex-
pressed with the simultaneous activation of an inducible
gene. Since there is no appreciable change in growth rate
even when using high copy number plasmids, we assume
that xS and yS , representing the resources allocated to the
gene expression of the host, are constant (however, if an
overexpressed protein is toxic to the cell, the growth rate
may decrease [8] and xS and yS might also be affected).
Therefore, introduce X = xT − xS and Y = yT − yS de-
noting the concentration of available RNAP and ribosomes,
respectively. To model the non-specific binding of RNAP,
introduce the “RNAP sink” described by the reactions

b̄ + x
κ̄+

−−⇀↽−−
κ̄−

c̄,

where η̄ = b̄ + c̄ is the DNA concentration of this “RNAP
sink”. At the steady state we obtain that the concentration
of RNAP sequestered by this sink is c̄ = η̄x/(x + κ̄) with
κ̄ = κ̄−/κ̄+, and since the non-specific binding of RNAP is
weak (κ̄� x by [23]), we obtain that xN = c̄ ≈ xη̄/κ̄.

The RNAP and ribosome demand of gene i is given by ci
and di in (4), respectively. Introduce N̄ = 1 + η̄/κ̄, so that

upon addition of genes i (i = 1, 2, . . . , n), (6)–(7) become

X =N̄x+

n∑
i=1

εiηi
x

x+ κi
, (8)

Y =y +

n∑
i=1

εihi
x

x+ κi

y

y + ki
. (9)

Let ε = (ε1, ε2, . . . , εn)T and u = (u1, u2, . . . , un)T , and
write (3) as

ε = E(u, x), (10)

so that (8) and (9) can be written with (10) as

X = Fε(ε, x) and Y = Gε(ε, x, y), (11)

respectively, and (5) with p = (p1, p2, . . . , pn)T as

p = Hε(ε, x, y). (12)

C. Problem Formulation

Define
F (u, x) =Fε(E(u, x), x),

G(u, x, y) =Gε(E(u, x), x, y),

H(u, x, y) =Hε(E(u, x), x, y),

(13)

using (10)–(12), and introduce the sets U = [0,∞)n and

P = {p | p = H(u, x, y), X = F (u, x), Y = G(u, x, y),

x ∈ [0, X], y ∈ [0, Y ], u ∈ U}, (14)

so that P is the set of protein concentrations attainable at
the steady state. Therefore, we call P the realizable region.
Here, we seek an explicit characterization of P solely in
terms of p, instead of the definition in (14) involving u, x
and y in the form of implicit constraints. As a result, we can
answer the following questions. How does the concentration
of protein pj change upon activation of gene i for j 6= i?
To what extent is it possible to increase the concentration
of pi without affecting the concentration of pj? In other
words, we seek to characterize the limitations and trade-offs
in protein production due to the limited availability of RNAP
and ribosomes.

III. REALIZABLE REGION
We characterize the realizable region P through a series

of intermediate results. In particular, we first focus on the
activation level εi of gene i for i = 1, 2, . . . , n. Then, we
consider a biologically reasonable approximation of (5) and
(8)–(9) and characterize the corresponding set S of attainable
protein concentrations. Finally, we prove that P ⊆ S.

A. Activation Level of Genes

Claim 1. Take F (u, x) and G(u, x, y) defined in (13). For
u ∈ U , there is a unique (x, y) ∈ [0, X] × [0, Y ] such that
F (u, x) = X and G(u, x, y) = Y . As a result, there exist
functions f, g : Rn → R such that x = f(u) and y = g(u).

Proof: According to (13), we have

F (u, x) = N̄x+

n∑
i=1

ui

µi

(
1 + x

κi

)
1 + ui

µi

(
1 + x

κi

)ηi x

x+ κi
−X. (15)



Fix u ∈ U . Since F (u, x) is continuous and F (u, 0) = 0
and F (u,X) > X by (15), there is at least one x ∈ [0, X]
such that F (u, x) = X , according to the Intermediate Value
Theorem [24]. Furthermore, since F (u, x) in (15) is strictly
increasing with x, there is exactly one x ∈ [0, X] such that
F (u, x) = X . Then, let f : Rn → R be the function that
maps u to this unique x, that is, F (u, f(u)) = X . The proof
for G can be constructed similarly.

With H(u, x, y) defined in (13), introduce A : Rn → Rn
as A(u) = H(u, f(u), g(u)), so that (14) can be written as

P = {p | p = A(u), u ∈ U}. (16)

Claim 2. Let E = [0, 1)n. Take Fε(ε, x) and Gε(ε, x, y) from
(11). For ε ∈ E , there is a unique (x, y) ∈ [0, X] × [0, Y ]
such that Fε(ε, x) = X and Gε(ε, x, y) = Y . As a result,
there exist functions fε, gε : Rn → R such that x = fε(ε)
and y = gε(ε).

Proof: Similar to the proof of Claim 1.

Claim 3. Take u ∈ U , the functions f and g defined in Claim
1, together with fε and gε defined in Claim 2. Furthermore,
consider ε = E(u, f(u)) from (10) with x = f(u). Then
f(u) = fε(ε) and g(u) = gε(ε).

Proof: By Claim 1, we have X = F (u, (f(u))),
yielding X = F (u, (f(u))) = Fε(E(u, f(u)), f(u)) from
(13), and since ε = E(u, f(u)) by assumption, we obtain
X = Fε(ε, f(u)). We further have X = Fε(ε, fε(ε)) by
Claim 2. As a result, we obtain that x = f(u) and x = fε(ε)
are both solutions of X = Fε(ε, x), and since it has a unique
solution by Claim 2, we conclude that f(u) = fε(ε). The
proof of g(u) = gε(ε) can be constructed similarly.

With Hε(ε, x, y) defined in (12), introduce the function
Aε : Rn → Rn as Aε(ε) = Hε(ε, fε(ε), gε(ε)) and the set

Pε = {p | p = Aε(ε), ε ∈ E}. (17)

Lemma 1. With P and Pε given in (16) and (17), respec-
tively, we obtain that P = Pε.

Proof: Let x = f(u) and y = g(u) denote the unique
solutions of F (u, x) = X and G(u, x, y) = Y with (x, y) ∈
[0, X]× [0, Y ] for u ∈ U , respectively (Claim 1). Referring
to (11), let x = fε(ε) and y = gε(ε) denote the unique
solutions of Fε(ε, x) = X and Gε(ε, x, y) = Y with (x, y) ∈
[0, X]× [0, Y ] for ε ∈ E , respectively (Claim 2).

To prove that P ⊆ Pε we show that for every u ∈
U there is an ε ∈ E such that A(u) = Aε(ε). First,
consider ε = E(u, f(u)), and given that f(u) ∈ [0, X],
we conclude that εi ∈ [0, 1) by (3), so that ε ∈ E by the
definition of E . Second, considering (13) implies A(u) =
H(u, f(u), g(u)) = Hε(E(u, f(u)), f(u), g(u)), so that ε =
E(u, f(u)) together with f(u) = fε(ε) and g(u) = gε(ε)
from Claim 3 yield A(u) = Hε(ε, fε(ε), gε(ε)) = Aε(ε),
where we used the definition of Aε(ε).

Similarly, to show that Pε ⊆ P it is sufficient to prove that
for every ε ∈ E there is a u ∈ U such that A(u) = Aε(ε).
Since (3) yields ui = εiµiκi/[(1−εi)(κi+fε(ε))], and given

that εi ∈ [0, 1) as ε ∈ E , we obtain ui ∈ [0,∞), so that
u ∈ U . The part A(u) = Aε(ε) can be showed as above.

By Lemma 1, in order to find the realizable region P , it
is sufficient to consider (5) with (8)–(9) for ε ∈ E , instead
of considering (5) with (8)–(9) and with (3) for u ∈ U .

B. Approximate Model & Approximate Realizable Region S
As an intermediate step to characterize the realizable re-

gion P , consider the (biologically reasonable, see Appendix)
approximations x � κi and y � ki for i = 1, 2, . . . , n, so
that (8)–(9) and (5) take the form

X = N̄x+

n∑
i=1

εi
ηi
κi
x, Y = y +

n∑
i=1

εi
hi
κiki

xy, (18)

pi = εi
qi
κiki

xy. (19)

Expressing x and y from (18) as a function of ε and
substituting these expressions into (19) yields

pi =
Qiεi

N̄ +
∑n
i=1Hiεi

, for i = 1, 2, . . . , n (20)

with

Qi =
qi
κiki

XY and Hi =
hi
κiki

X +
ηi
κi
. (21)

Furthermore, let Â : Rn → Rn be the function mapping ε to
p according to (20), so that p = Â(ε). Next, define

pmax
i =

Qi
N̄ +Hi

and p∞i =
Qi
Hi
, (22)

and introduce the simplex Si for i = 1, 2, . . . , n as

Si =

p | p ≥ 0 and
pi
pmax
i

+

n∑
j=1
j 6=i

pj
p∞j

< 1

 . (23)

Lemma 2. Let

S = {p | p = Â(ε), ε ∈ E}. (24)

Then, we obtain S = ∩ni=1Si where Si is defined in (23).

Proof: We first show S ⊆ ∩ni=1Si as follows. Introduce
Ei = {ε | εi ∈ [0, 1) and εj ∈ [0,∞) for j 6= i} and let
Pi = Qiεi/(N̄ +Hiεi), so that we have Pi < pmax

i by (22).
Furthermore, p = Â(ε) satisfies

pi
Pi

+

n∑
j=1
j 6=i

pj
p∞j

= 1 (25)

by substitution of (20) into (25). The fact that ε ∈ E yields
p ≥ 0 by (19), and Pi < pmax

i with (25) result in

pi
pmax
i

+

n∑
j=1
j 6=i

pj
p∞j

<
pi
Pi

+

n∑
j=1
j 6=i

pj
p∞j

= 1,

so that p ∈ Si by (23) for ε ∈ Ei. Combining this together
with the fact that ε ∈ E = ∩ni=1Ei yields that S ⊆ ∩ni=1Si.



Fig. 2. In the case of n = 3, S in (24) is the intersection of the simplexes
S1, S2 and S3 (Lemma 2), where Si is defined in (23) as the simplex given
by the origin, pmax

i on the pi-axis and p∞j on the pj -axis for j 6= i.

Second, we prove ∩ni=1Si ⊆ S by showing that for any
p ∈ ∩ni=1Si there exists an ε ∈ E such that p = Â(ε). To
this end, pick p ∈ ∩ni=1Si and define

Pi =
pi

1−
∑n
j=1
j 6=i

pj
p∞j

and εi =
N̄Pi

Qi −HiPi
(26)

for i = 1, 2, . . . , n. Substituting ε into (20) we obtain that
p = Â(ε). Therefore, it is only left to show that ε ∈ E . Given
that p ∈ ∩ni=1Si, we obtain by (23) that

0 ≤ pi < pmax
i and 0 ≤

n∑
j=1
j 6=i

pj
p∞j

< 1.

Combining this together with (26) yields that Pi ∈ [0, pmax
i ).

Having Pi = 0 and Pi = pmax
i result in εi = 0 and εi =

1 in (26) by (22). Furthermore, as εi in (26) is a strictly
increasing function of Pi for Pi ∈ [0, pmax

i ), we conclude
that εi ∈ [0, 1) for i = 1, 2, . . . , n, so that ε ∈ E .

The realizable region S of protein concentrations when
x � κi and y � ki is given as S = ∩ni=1Si by Lemma
2, where Si is the n-dimensional simplex defined by the
following n+ 1 vertices: the origin, pmax

i on the pi-axis and
p∞j on the pj-axis for j 6= i (see Fig. 2). Furthermore, the
dependence of Si on the biochemical parameters is given by
the expressions of pmax

i and p∞i in (22). For instance, both
pmax
i and p∞i increase as ki decreases (stronger RBS for

gene i), and pmax
i increases while p∞i remains unaffected as

κi decreases (stronger promoter for gene i).

C. The Realizable Region P Lies Inside S
We next show that even when the approximations x �

κi and y � ki do not hold, the set of attainable protein
concentrations given by P in (16) lie within S in (24).

Theorem 1. Considering P and S defined in (16) and (24),
respectively, we obtain that P ⊆ S.

Proof: With Pε defined in (17), we have Pε = P by
Lemma 1, so that it is sufficient to show that Pε ⊆ S to
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p
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M
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for RNAP and ribosomes
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of the realizable region

with competition
for RNAP and ribosomes

Fig. 3. The set of attainable protein concentrations without considering
competition for RNAP and ribosomes is B given in (35). When considering
the limited availability of RNAP and ribosomes given by (8)–(9), the set of
attainable protein concentrations P in (16) lie inside the outer approximation
S from (24). The set S is the intersection of the simplexes S1 and S2 in
(23) (triangles with dashed border). Simulation parameters: η1 = η2 =
100nM, λ1 = λ2 = 1hr−1, π1 = π2 = 1500hr−1, δ1 = δ2 = 10hr−1,
γ1 = γ2 = 500hr−1 κ1 = κ2 = 150nM, k1 = k2 = 1000nM, N̄ = 13,
X = Y = 1300nM, x0 = 100nM and y0 = 1300nM.

prove P ⊆ S. To this end, fix ε ∈ E and let p = Aε(ε). If
we can show that p ∈ Si for i = 1, 2, . . . , n, it implies that
p ∈ S since S = ∩ni=1Si by Lemma 2, yielding Pε ⊆ S.

To show that p ∈ Si for i = 1, 2, . . . , n, define

αi =
κi

x+ κi
, βi =

ki
y + ki

, ε′i = αiβiεi, (27)

so that (4)–(5) and (8)–(9) become

ci =
ε′i
βi

ηi
κi
x, di = ε′i

hi
κiki

xy, pi = ε′i
qi
κiki

xy, (28)

x =
X

N̄ +
∑n
i=1

ηi
κi
ε′i
, y =

Y

1 +
∑n
i=1

hi

κiki
ε′ix

. (29)

As a result, with Qi from (21) and with H ′i = hiX/(κiki)+
ηi/(βiκi), we can write pi in (28) with (29) as

pi =
Qiε
′
i

N̄ +
∑n
i=1H

′
iε
′
i

. (30)

Furthermore, introduce p̃i = (Qiε
′
i)/(N̄ +

∑n
i=1Hiε

′
i) and

let p̂ = (p̂1, p̂2, . . . , p̂n)T where p̂i is given by (20).
The fact that αi, βi ∈ (0, 1) yields ε′i ∈ [0, εi) by (27) and

Hi ∈ (0, H ′i) by (21). Since ε′i ∈ [0, εi) implies p̃i < p̂i, and
similarly, Hi ∈ (0, H ′i) yields pi < p̃i, we obtain

0 ≤ pi < p̃i < p̂i. (31)

Furthermore, from Lemma 2 we have

p̂i
pmax
i

+

n∑
j=1
j 6=i

p̂j
p∞j
− 1 < 0, (32)

and combining (31)–(32) yields

pi
pmax
i

+

n∑
j=1
j 6=i

pj
p∞j

<
p̂i
pmax
i

+

n∑
j=1
j 6=i

p̂j
p∞j

< 1. (33)



We have pi ≥ 0 by (31). Together with (33) this implies that
p ∈ Si for i = 1, 2, . . . , n by (23), concluding the proof.

Introduce x0 and y0 such that

X = Fε(0, x0) and Y = Gε(0, x0, y0), (34)

that is, x0 and y0 denote the concentration of free RNAP
and ribosomes, respectively, when none of the genes in Fig.
1B are activated (εi = 0 for i = 1, 2, . . . , n). Next, define

B = {p | p = H(u, x0, y0), u ∈ U}, (35)

representing the set of attainable protein concentrations with-
out considering competition for RNAP and ribosomes (so
that x = x0 and y = y0), see Fig. 3 for a particular example
when n = 2. Since S ⊂ B in Fig. 3, if (p1, p2) ∈ B \S then
(p1, p2) /∈ P . As a result, without considering competition
for RNAP and ribosomes we would erroneously conclude
that the protein concentrations (p1, p2) are attainable.

IV. PRACTICAL IMPLICATIONS OF THE LIMITED
AVAILABILITY OF RNAP AND RIBOSOMES

Here, we present two examples of how protein con-
centrations become coupled due to competition for shared
resources, and we detail the resulting limitations and trade-
offs building upon our results from the previous section. In
particular, we show that proteins can seemingly behave both
as repressors and as activators, purely as an effect of the
limited availability of RNAP and ribosomes.

A. Lateral Inhibition with Two Genes

Consider two genes, and for simplicity, focus on the bio-
logically reasonable approximations (see Appendix) x� κi
and y � ki for i = 1, 2, so that the realizable set of protein
concentrations P is equal to S by Lemma 2. We investigate
the limitations and trade-offs in protein expression, i.e., how
p2 changes as the expression of p1 increases.

Fix the activation ε2 of gene 2 (ε2 = ε∗2), while increasing
the activation ε1 of gene 1. Without considering competition
for the shared resources, the set of attainable protein con-
centrations is B given in (35), see Fig. 4A. In this case,
the concentration x and y of free RNAP and ribosomes,
respectively, are independent of the value of ε1 and ε2
(x = x0 and y = y0, see (34)). As a result, p1 increases
while p2 remains unaffected when increasing the activation
ε1 of gene 1 by (16). That is, the attainable pairs (p1, p2)
lie along a horizontal line (Fig. 4A). However, due to the
limited availability of resources, p2 decreases by (20) as the
activation ε1 of gene 1 increases, since some of the resources
have to be reallocated from gene 2 to gene 1. Referring to
(20), the pair (p1, p2) satisfies the linear constraint(

A1 +
B1

X

)
︸ ︷︷ ︸

α

p1 +

(
A2 +

B2 + C/ε∗2
X

)
︸ ︷︷ ︸

β

p2 = Y (36)

with Ai = λi/πi, Bi = δikiAi/γi and C = B2κ2k2N̄/η2.
Since ∂p1

∂ε1
> 0 and ∂p2

∂ε1
< 0 from (20), the pair (p1, p2)

moves along the line (36) from left to right by increasing ε1
(red line in Fig. 4B). The top boundary of S in Fig. 4B is

A B

     can be increased while
keeping      constant by
further activating both genes

Phase #1
     must decrease to increase     
by further activating gene 1 and 
keeping gene 2 fully activated

Phase #2

     must decrease to increase     
by further activating gene 1 and by 
decreasing the activation of gene 2

Phase #3

C

Fig. 4. Limitations and trade-offs in protein concentrations in the case
of two genes. (A) Without competition for RNAP and ribosomes, the
concentration of p2 would not decrease when activating gene 1 (red).
(B) When the genes are competing for RNAP and ribosomes, resources
need to be reallocated from p2 for the production of p1. As a result, the
concentration of p2 decreases upon activation of gene 1 (red). (C) We can
first increase the expression of gene 1 without decreasing p2 (purple), but
once reaching the boundary of the realizable region S, the expression of
gene 2 must decrease to further increase p1 (orange and green).

given by (36) when ε2 = 1 (gene 2 is fully activated), and
similarly, the right boundary of S corresponds to the case
when ε1 = 1 (gene 1 is fully activated).

The linear constraint in (36) can be interpreted as an
isocost line [25], a concept introduced in microeconomics
to describe what combinations of two products can be
purchased with a limited budget. Here, the products are p1

and p2 with prices α and β, respectively, whereas the budget
Y is the concentration of available ribosomes. Increasing
the availability of resources (RNAP and ribosomes) allows
for purchasing more products: the value of p1 and p2 can
be increased simultaneously. In particular, increasing the
concentration X of available RNAP molecules decreases
the prices α and β, whereas increasing the concentration
of available ribosomes Y increases the budget. Furthermore,
the isocost line describes how changing the biochemical
parameters of a gene affects the extent of competition due to
the limited availability of resources. In particular, the slope of
the isocost line is −α/β by (36), so that producing an extra
p1 decreases the concentration of p2 by α/β. The “more
expensive” p1 compared to p2 (the greater α/β), the more p2

have to be sacrificed in order to purchase an additional unit of
p1. For instance, α decreases with the dissociation constant
k1, so that stronger RBS for gene 1 makes the isocost line
flatter by (36), verified in vivo in [17].

Without competition for shared resources, increasing the
activation ε1 of gene 1 does not affect p2 (Fig. 4A). However,
due to the limited availability of RNAP and ribosomes, the
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Fig. 5. Lateral activation in the case of n = 3 genes upon activation
of gene 1. (A) The free concentration x of RNAP decreases (however, the
RNAPs allocated to gene 2 are not sequestered as κ2 � x). (B) The
free concentration y of ribosomes increases as the activation level of gene
1 increases, since they are freed up from gene 3. (C) The concentration
p2 of p2 increases as the activation level of gene 1 increases. Simulation
parameters: X = Y = 1300nM, N̄ = 13, γ1 = γ2 = γ3 = 500hr−1,
π1 = π2 = π3 = 1500hr−1, δ1 = δ2 = δ3 = 10hr−1, λ1 = λ2 =
λ3 = 1hr−1, η1 = 100nM, η2 = 10nM, η3 = 100nM, κ1 = 100nM,
κ2 = 10nM, κ3 = 1000nM, k1 = 10M, k2 = 1mM and k3 = 1µM.

expression of gene 2 decreases when activating p1 according
to (36), as ∂p2

∂ε1
< 0 < ∂p1

∂ε1
by (20). As a result, to increase

p2 and keep p1 unaffected (phase #1 in Fig. 4C), we must
increase the activation of both genes: by (20), increasing ε1
yields greater expression of p1, and the resulting decrease
in p2 can be compensated by increasing ε2. However, when
gene 2 becomes fully activated (ε2 → 1), compensation is no
longer possible, so that further increasing the activation ε1
of gene 1 decreases p1 (phase #2 in Fig. 4C). Finally, when
gene 1 becomes fully activated (ε1 → 1), the concentration
of p1 cannot be further increased while keeping gene 2 fully
activated. Instead, we must decrease ε2 so that resources can
be reallocated to the expression of p1 (phase #3 in Fig. 4C).

B. Lateral Activation with Three Genes

Since genes compete for the shared resources, one would
expect that activating one gene decreases the expression of a
different one. Here, we show that this is not always the case,
and that counter-intuitively, unconnected genes can behave
as activators to each other due to the limited availability
of resources. To this end, consider κ2 � x � κ1, κ3 and
y � k1, k2, k3, so that the promoter of gene 2 is saturated
with RNAP. Furthermore, we focus on the case when genes
2 and 3 are fully activated (ε2, ε3 → 1). Considering (8)–(9)
when κ2 � x � κ1, κ3 and y � k1, k2, k3, and taking the
derivative of p2 in (5) with respect to ε1 yields

sgn
(

dp2

dε1

)
= sgn

(
η1

κ1

h3

κ3k3
−
(
N̄ +

η3

κ3

)
h1

κ1k1

)
.

As a result, dp2
dε1

> 0 if, for instance, k1 is sufficiently large
(the RBS of the mRNA encoding p1 is sufficiently weak).

In this case, activating gene 1 increases the concentration of
p2, despite gene 2 being already fully activated (ε2 → 1).

This seemingly counter-intuitive result can be explained
as follows. Activating gene 1 results in an increased demand
for RNAP, consequently, less RNAP is available for the other
two genes by (8). However, since the promoter of gene 2 is
particularly strong (κ2 � x), it stays saturated with RNAP,
that is, the concentration of mRNA encoding p2 remains
about the same. By contrast, the promoter of gene 3 is weak
(κ3 � x), so that less mRNA encoding p3 is produced,
i.e., the demand for ribosomes by gene 3 decreases by (4).
In the meantime, if the RBS of the mRNA encoding p1 is
weak (k1 is sufficiently large), the demand for ribosomes by
gene 1 is negligible by (4). Consequently, the ribosomes not
used by gene 3 can be used by gene 2. In summary, the key
features for obtaining the phenomenon are weak RBS in gene
1, strong promoter in gene 2 and weak promoter in gene 3.
This lateral activation phenomenon is demonstrated in Fig.
5 (without using the approximations κ2 � x � κ1, κ3 and
y � k1, k2, k3).

V. DISCUSSION

In this paper, we have characterized how the concentration
of proteins become coupled due to competition for shared
cellular resources, even in the absence of regulatory linkages.
In particular, we showed that the realizable region P of
protein concentrations lies within S, which is a biologically
reasonable outer approximation (see Appendix) easily calcu-
lated from (23)–(24). Building on this result, we determined
the limitations and trade-offs in gene expression due to the
limited availability of RNAP and ribosomes, and how they
depend on various biochemical parameters. Furthermore, we
demonstrated that the coupling in protein concentrations due
to competition for RNAP and ribosomes can be interpreted
using isocost lines, a concept introduced in microeconomics
to describe the attainable combinations of products having a
limited budget. Finally, we presented the counter-intuitive
phenomenon of lateral activation, in which inducing the
expression of one protein can increase the production of a
second one, by reallocating resources from a third, serving
as a buffer for shared resources.

A natural extension of the results presented here is con-
sidering regulatory linkages among genes, thus enabling
the description of how the limited availability of resources
couples the expression of different proteins in arbitrary gene
networks. We are further working on the extension of the
presented framework to describe the dynamic behavior of
gene circuits. A particularly interesting research direction is
combining the results of [6], describing the effects of sharing
transcription factors on the dynamics of modules, and the
result presented here, characterizing the stationary effects of
the limited availability of transcriptional and translational
machinery. As a result, one could account for two of the
major causes of context-dependence in systems and synthetic
biology in a unified mathematical framework, allowing a
more detailed understanding of natural systems, and the
design of multi-module systems with predictable behavior.



TABLE I
TYPICAL VALUES OF BIOCHEMICAL PARAMETERS

Parameter Value Unit References
X 1300 nM [20]
Y 1300 nM [21], [22]
N̄ 13 - [20]
κi 1000 nM [26]
δi 10 hr−1 [29]
γi 500 hr−1 [21], [30], [27]
πi 1500 hr−1 [21], [30]
λi 1 hr−1 [31]

VI. APPENDIX

The dissociation constant of the T7 RNAP to its promoter
is approximately 200nM [26], and since this binding is con-
siderably stronger than that of bacterial RNAP, we conclude
that κi � 200nM, suggesting x� κi as x ≈ 100nM.

According to [27], as many as 20 RNAP molecules can
simultaneously transcribe a gene. Instead of having one gene
recruiting a maximum of ω RNAP molecules, we consider ω
genes allowed to recruit at most one RNAP at a time, as if the
DNA copy number was ωη instead of η (we use a low-range
value of ω = 5 denoting the number of RNAP molecules
simultaneously transcribing a gene). Similarly, according to
[21], several ribosomes can simultaneously translate each
mRNA, up to a few dozen depending on the growth rate.
Instead of having m mRNA molecules, each of which can
be bound to φ ribosomes at any given time, we consider φm
mRNA molecules allowed to be bound to a single ribosome.
This can be achieved by considering the effective production
rate φγ instead of γ (we use a low-range value of φ = 5
denoting the number of translations per mRNA).

Considering the typical value of biochemical parameters
given in Tab. I with k = 1000nM, we obtain p ≈ 10µM,
which is comparable to the concentration of one of the most
abundant proteins in E. coli [28]. Therefore, we approximate
the binding of ribosomes to the RBS of the mRNA to be
significantly weaker than 1000nM, so that ki � 1000nM.
Combining this with the fact that the concentration of free
ribosomes is y = 1300nM suggests that y � ki.
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