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It has been shown that an isometry always exists
to fold a paper to match a non-expansive folding of
its boundary [1]. However, there is little (if any) re-
search in designing crease patterns that satisfy mul-
tiple constraints. In this paper, we analyze crease
patterns that can fold to multiple prescribed folded
boundaries and flat-foldable states, such that every
crease in the crease pattern is finitely folded in each
folding.

Theorem 1 Given a four cornered paper, there ex-
ists a single vertex crease pattern folding through
each corner of the paper that also folds flat.

Proof. A single degree-four vertex in a flat-foldable
crease pattern must obey Kawasaki’s theorem, that
the sum of opposite angles sum to π. From this
condition, one can derive a condition on possible
positions (x, y) of the single vertex. We can pa-
rameterize any simple quadrilateral with cyclically
ordered points a = (−1, 0), b = (x1, y1), c = (1, 0),
and d = (x2, y2), where y1 is positive and y2 is neg-
ative, and the line from a to c is a visible diagonal.
The condition on the location of a flat-foldable ver-
tex is then given by the following cubic equation:
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The curve defined by this equation passes through
each corner of the paper, as can be readily veri-
fied. However, we must prove that the curve passes
through the interior of the paper. It suffices to show
that the tangent to the curve at one of the vertices
passes between its two adjacent edges. Taking par-
tial derivatives of Equation 1, one can show the tan-
gent to the curve at pa has the same direction the
following vector:

vT = ( (x1 + 1)(x2 + 1) − y1y2, y1(x2 + 1) + y2(x1 + 1) ) . (2)

The edges adjacent to pa have directions vb = (x1+
1, y2) and vd = (x2 + 1, y2) respectively. Taking
magnitude of the cross products in the ẑ direction
out of the plane yields the following relations:

(vT × vb) · ẑ = −( (1 + x1)
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1 )y2; (3)

(vT × vd) · ẑ = −( (1 + x2)
2
+ y

2
2 )y1. (4)
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Because y2 is always negative, the first condition is
always positive, so the top edge is a left turn from
the tangent line. Because y1 is always positive, the
second condition is always negative, so the bottom
edge is a right turn from the tangent line, so local
to pa, the curve must intersect the quadrilateral,
completing the proof. �

For quadrilateral paper, the solution space of sin-
gle vertex crease patterns satisfying a folding of its
boundary is an ellipse on the interior of the paper.
The equation of this ellipse in general is quite com-
plicated. However, in the case of kite quadrilaterals,
the ellipse is axis aligned with the diagonals, and for
squares the ellipse is centered. Let the corners of
the square be (−1, 0), (0, 1), (1, 0) and (0,−1). We
parameterize the folding of the square boundary by
the distances between the two diagonals, distance
2
√

1− a2 along the x axis and distance 2
√

1− b2
along the y axis; this parameterization will simplify
the equations later on. Using this parameteriza-
tion, the equation of the ellipse of crease pattern
vertices satisfying the boundary condition (a, b) is
as follows:
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Since the ellipse is centered at the origin, it must
cross the x and y axes four times except in the de-
generate cases where the ellipse becomes a line or a
point, specifically when a or b equal 1 or 0.

Theorem 2 Given a square of paper and two fold-
ings (a1, b1), (a2, b2) of its boundary folded only at
the corners, then if the intervals [a1, b1] and [a2, b2]
overlap, then there exists a single vertex crease pat-
tern that folds exactly to both boundaries.

Proof. The proof is by construction. The approach
will be to calculate the set of possible crease pat-
terns with one interior vertex that folds to each
boundary, and show that the two sets have crease
patterns in common when the intervals [a1, b1] and
[a2, b2] overlap.

We have already shown that the solution space
for each boundary condition is an ellipse given by
Equation 5. Given two such ellipses parameterized
by (a1, b1) and (a2, b2), they can be made to inter-
sect as long as the smaller major radius is larger
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Figure 1: The state space of a two vertex crease
pattern, plotting a vs. b, and four folded states for
a single value of a.

than the minor radius of the other since the roles of
a and b are interchangeable under boundary map-
pings. A simple yet tedious case analysis shows
that this equation holds when intervals [a1, b1] and
[a2, b2] overlap. The converse statement is not true
as there are points when the intervals do not overlap
such that the inequality is still true. �

Theorem 3 Given any two nonexpansive bound-
ary foldings of a square paper folding at its vertices,
there exists a one or two-vertex crease pattern that
can fold rigidly to meet both boundary conditions.

Proof. The proof is by construction. The approach
will be to calculate a subset of possible crease pat-
terns with two interior vertices that folds to each
boundary, and show that the two sets have crease
patterns in common.

We will parameterize a subset of two-vertex
crease patterns in the special case where one vertex
resides on a diagonal. We will let s be the distance
between this vertex p and point (−1, 0). Solving the
distance equations again yields the equation of an
ellipse, this time of the following form:
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− 1 = 0. (6)

However, this time there are two possible ellipses
for each choice of boundary condition: one when
the crease from (−1, 0) to p is a valley fold, and one
when the crease is a mountain fold. The parameters
of the ellipse in each case are given by:
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Figure 2: Graphs of how x0, rx, and ry vary with
respect to s for (a1, b1) = (0.3, 0.3) (blue) and
(a2, b2) = (0.95, 0.95) (orange).

When s = 0, these parameters reduce Equation 6
to Equation 5. Figure 1 shows a plot of this state
space for one such crease pattern. The bottom right
corner corresponds to the flat state.

The equations continue to define an ellipse as long
as ry does not become negative. If the ellipse corre-
sponding to (a1, b1) and (a2, b2) do not intersect at
s = 0, then that means both rx and ry are larger for
one and not the other because x0 is zero. Without
loss of generality, assume a1 > a2 and b1 > b2. ry
is zero precisely when:

s(ry = 0) = 1 ± b

√
1 − a2

a2 + b2
. (10)

Since ry is symmetric about 1 for any (a, b), this
means ry for (a1, b1) and ry for (a2, b2) must be
equal form some s. If they are equal, their corre-
sponding ellipses must intersect, which corresponds
to a two vertex solution. Figure 2 shows how x0,
rx, and ry vary with respect to s. �

We conjecture that any finite set of corner fold-
ings of a square can be satisfied with a finite crease
pattern such that every crease folds by a nonzero
amount when satisfying each boundary folding.
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