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1. Introduction

Many problems in origami require the folder to map the perimeter of a piece of
paper to some specified folded configuration. In the tree method of origami design,
circle packing breaks the paper up into polygonal molecules whose perimeter must
be mapped to a specific tree. The fold-and-cut problem inputs a set of polygonal
silhouettes whose perimeters must be mapped onto a common line. These two
problems are well studied; one solution to the molecule folding problem is the
universal molecule [Lang 96] while a solution to the fold-and-cut problem lies in
the polygon’s straight skeleton [Demaine et al. 98][Bern et al. 02]. Both of these
problems can be considered as specific versions of a more general problem: the hole
problem.

Given a crease pattern with a hole in it (an area of the paper with the creases
missing), can we fill in the hole with suitable creases? More precisely, given a
sheet of paper and a prescribed folding of its boundary, is there a way to fold
the paper’s interior without stretching so that the boundary lines up with the
prescribed boundary folding? This hole problem was originally proposed by Barry
Hayes at 3OSME in 2001 with the motivation of finding flat-foldable gadgets with
common interfaces satisfying certain properties, such as not-all-equal clauses for an
NP-hardness reduction [Bern and Hayes 96].

This problem formulation can be transformed to solve several existing problems,
as well as some new applications (see Figure 1). If we map the boundary to a line,
the polygon is now a molecule to be filled with creases or one half of a fold-and-cut
problem cutline. The hole problem can also address problems where the boundary
is not mapped to a line, i.e. mappings into the plane or into three dimensions,
potentially leading to the algorithmic design of multi-axial bases, color-changes,
or complex three-dimensional tessellation or modulars. When trying to combine
separately designed parts of an origami model, a solution to the hole problem could
be used to design an interfacing crease pattern between them.

In this paper, we show that the hole problem always has a solution for polyg-
onal input boundaries folded at finitely many points under the obvious necessary
condition that the input folding is nonexpansive, and present a polynomial-time al-
gorithm to find one. We restrict ourselves to isometry and ignore self-intersection,
leaving layer ordering (if possible) as an open problem. Section 2 introduces no-
tation and defines the problem. Section 3 discusses the necessary condition which
will turn out to be sufficient. Section 4 constructs vertex creases satisfying lo-
cal isometry. Section 5 propagates the creases. Section 6 describes partitioning
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Figure 1. (Left) A boundary mapping that might be used to
design a color-change checker board model. (Right) An unfinished
crease pattern with parts of the crease pattern unknown.

polygons. Section 7 describes the algorithm. Section 8 discusses application and
implementation. Section 9 summarizes the results.

2. Notation and Definitions

First some notation and definitions. Let ‖·‖ denote Euclidean distance. Given a
set of points A ⊆ B ⊂ R

c, c ∈ Z
+ and mapping f : B → R

d, d ∈ Z
+, we say that

A is (expansive, contractive, critical) under f if ‖u− v‖ (<,>,=) ‖f(u)− f(v)‖
for every u, v ∈ A, with (nonexpansive, noncontractive, noncritical) referring to
respective negations. Critical is the same as isometric under the Euclidean metric,
but because we will use the term “isometry” to refer to isometric maps under
the shortest-path metric [Demaine and O’Rourke 07], we use a different term for
clarity. We say two line segments cross if their intersection is nonempty. We now
prove two relations on crossing segments under certain conditions using the above
terminology, including a generalization of Lemma 1 from [Connelly et al. 03].

R
d

f(u)

f(q)
f(v)

f(p)

S0

S1 S2

Figure 2. Points f(u), f(v), f(q), f(p) with spheres S0, S1, S2.
The shaded area S1 ∩ S2 ⊂ S0 is the region in which f(p) may
exist if {p, u, v} is nonexpansive under f .

Lemma 1. Consider distinct points p, q, u, v ∈ R
2 with p, u, v not collinear, line

segment (p, q) crossing line segment (u, v), and a mapping f : {p, q, u, v} → R
d.



FILLING A HOLE IN A CREASE PATTERN 3

(a) If {q, u, v} is critical and {p, u, v} is nonexpansive under f , then {p, q} is non-
expansive under f . (b) If {u, v} is critical, and {p, u, v}, {q, u, v} are nonexpansive
under f , then {p, q} is nonexpansive under f ; additionally if {p, q} is critical under
f , then {p, q, u, v} is also.

Proof. (a) Consider the following d-dimensional balls: S0 centered at f(q) with
radius ‖p− q‖, S1 centered at f(u) with radius ‖p− u‖, and S2 centered at f(v)
with radius ‖p− v‖ (see Figure 2). {p, u, v} nonexpansive under f implies f(p) ∈
S1 ∩ S2. {q, u, v} critical and (p, q) crossing (u, v) implies S1 ∩ S2 ⊂ S0. Because
f(p) ∈ S0, {p, q} is nonexpansive under f .

(b) Let x = u+t(v−u) be the intersection of (p, q) and (u, v) and let xf = f(u)+
t(f(v) − f(u)). Repeated application of Lemma 1(a) yields ‖x− i‖ ≥ ‖xf − f(i)‖
for i ∈ {p, q}. Combining with ‖x− p‖ + ‖x− q‖ = ‖p− q‖ and the triangle
inequality, ‖xf − f(p)‖ + ‖xf − f(q)‖ ≥ ‖f(p)− f(q)‖, yields {p, q} nonexpansive
under f . Further, if {p, q} is critical under f , then so is {p, q, xf}. Segments
(f(p), f(q)) and (f(u), f(v)) are coplanar crossing at xf such that {u, p} expansive
implies {u, q} contractive under f . Since {p, q, u, v} is nonexpansive, {p, q, u, v}
must be critical under f . �

We will consider a polygon P to be a bounded closed figure in R
2 bounded by

finitely many line segments connected in a simple cycle, with non-touching bound-
ary. This definition restricts polygons to topological disks, and allows adjacent
edges to be collinear. Let V (P ) denote the vertices of P , ∂P denote the boundary
of P , with V (P ) ⊂ ∂P ⊂ P . An edge of P is a line segment in ∂P with endpoints
at adjacent vertices. We say that a point p ∈ P is visible from a vertex v ∈ V (P )
if the line segment from p to v is in P . With the terminology in place, we can now
state the problem (see Figure 3).

Hole Problem. Given a polygon P in the plane with a boundary mapping f :
∂P → R

d, find an isometric mapping g : P → R
d such that g(∂P ) = f(∂P ).

R
2

R
d R

2
R

d

∂P f(∂P )

P g(P )

p ∈ V (P )

f(p)

Figure 3. Input and output to the hole problem showing notation.

If one exists, we call g a solution to the hole problem. Mapping P into R requires
infinitely many folds, so we restrict to d ≥ 2 for the remainder.
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3. Necessary Condition

In this section, we define valid boundary mappings and give a necessary condition
for the hole problem under the weak assumption that the polygon boundary is folded
at finitely many points.

Definition. (Valid Mapping) Given polygon P and boundary mapping f : ∂P →
R

d, define f to be valid if ∂P is nonexpansive under f and adjacent vertices of P
are critical under f .

Lemma 2. Consider an instance of the hole problem with input polygon P and
boundary mapping f : ∂P → R

d nonstraight at finitely many boundary points. If f
is not valid then the instance has no solution.

Proof. Modify V (P ) to include boundary points nonstraight under f (vertices ad-
jacent to collinear edges are allowed), so that f is straight for ∂P \V (P ). Assume a
solution g exists and f is not valid. Then either two points a, b ∈ ∂P are expansive
under f , or two adjacent vertices u, v ∈ V (P ) are noncritical. If the former, then
{a, b} is also expansive under g, so g cannot be isometric. If the latter, then f(p)
is nonstraight for some p on the edge from u to v, a contradiction. �

To determine the validity of f , checking expansiveness between all pairs of points
in ∂P is impractical. Instead it suffices to show that the set of vertices is nonex-
pansive under f , and edges of P map to congruent line segments.

Lemma 3. Given polygon P and boundary mapping f : ∂P → R
d, f is valid if

and only if V (P ) is nonexpansive and edges of P map to congruent line segments
under f .

Proof. If f is valid, V (P ) is nonexpansive under f since V (P ) ⊂ ∂P , and edges
map to congruent line segments because adjacent vertices are critical and points
interior to edges are nonexpansive with endpoints. To prove the other direction,
if edges of P map to congruent line segments, adjacent vertices are critical and
pairs of points on the same edge are nonexpansive (indeed critical) under f . To
show that points from different edges are nonexpansive under f , consider vertex
p and point q interior to the edge from vertex u to v. By Lemma 1(a), {q, p} is
nonexpansive under f for any vertex p. Now consider point q′ ∈ ∂P not on the
edge from u to v. By the same argument as above, {q′, u, v} is nonexpansive under
f , so by Lemma 1(a), {q, q′} is also nonexpansive. �

4. Bend Lines

When the interior angle of the polygon boundary at a vertex decreases in mag-
nitude under a valid boundary mapping, the local interior of the polygon will need
to curve or bend to accommodate. For simplicity, we consider only single-fold so-
lutions to satisfy such vertices, which will still be sufficient to construct a solution.
We call these creases bend lines made up of bend points.

Definition. (Bend Points and Lines) Given polygon P with valid boundary mapping
f : ∂P → R

d and vertex v ∈ V (P ) adjacent to two vertices {u,w} contractive under
f , define p ∈ P to be a bend point of (P, f, v) if there exists some q ∈ R

d (called
a bend point image of p) for which ‖p− i‖ = ‖q − f(i)‖ for i ∈ {u, v, w} and p is
visible from v. Further, define a bend line of (P, f, v) to be a maximal line segment
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Figure 4. The bend points of (P, f, v) showing relavent angles
{θ, φ, β}, points {u, v, w, p, f(u), f(v), f(w), q}, and sets {R,S}.
The upper figures show only the boundary mapping, while the
lower images show filled, locally satisfying mappings of the interior.

of bend points of (P, f, v), with one endpoint at v and the other in ∂P ; and let a
bend line image be a set of bend point images of the bend points in a bend line,
congruent to the bend line.

A bend point corresponds to a point in the polygon such that triangles △pvu

and△pvw isometrically map to triangles△qf(v)f(u) and△qf(v)f(w) respectively.
Bend lines correspond to single folds of P that locally satisfy isometry for the
boundary from u to w through v. Lemma 4 represents bend points explicitly (see
Figure 4).

Lemma 4. Consider polygon P with valid boundary mapping f : ∂P → R
d and

vertex v adjacent to two vertices {u,w} contractive under f . Let θ = ∠uvw be the
internal angle of P at v; let φ = ∠f(u)f(v)f(w); and let

R =

{

p ∈ P

∣

∣

∣

∣

∣

∠pvu ∈
{

θ−φ
2

, θ+φ
2

}

p visible from v

}

, S =

{

p ∈ P

∣

∣

∣

∣

∣

∠pvu ∈
[

θ−φ
2

, θ+φ
2

]

p visible from v

}

.

Then the set of bend points of (P, f, v) is R if d = 2, and S otherwise.

Proof. A point p ∈ P visible from v is a bend point of (P, f, v) only if triangles
△pvu,△pvw are congruent to △qf(v)f(u),△qf(v)f(w) respectively for some bend
point image q by definition. Let β = ∠pvu. If d = 2, △pvu and △pvw must be
coplanar. Then the internal angles of both triangles at v must sum to θ, and the
magnitude of their difference |(θ − β) − β| must be φ. This condition is satisfied

only when β ∈
{

θ−φ

2
, θ+φ

2

}

. Thus for d = 2, the set of bend points of (P, f, v) is R.

For d > 2, triangles △qf(v)f(u),△qf(v)f(w) need not be coplanar. Because

{u,w} is contractive under f , φ ≥ |θ − 2β|, so θ−φ

2
≤ β ≤ θ+φ

2
, and points in

P \ S cannot be bend points. It remains to show that for each point p ∈ S there
exists a satisfying bend point image q ∈ R

d. For a given p, q must lie on two
hyper-cones each with apex v, one symmetric about the segment from f(v) to f(u)
with internal half angle β, and the other symmetric about the segment from f(v)
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to f(w) with internal half angle θ−β. These hyper-cones have nonzero intersection
H because (θ−β)+β > φ and φ ≥ max(θ−β, β)−min(θ−β, β). The intersection
of two hyper-cones with common apex v is a set of rays emanating from v, so H

intersects the (d−1)-sphere centered at f(v) with radius ‖p− v‖. Any point in this
intersection satisfies all three constraints of a bend point image for any p ∈ S. �

For every d > 2, the set of bend points of (P, f, v) is the same, but the set of
bend point images increases with dimension. The set of bend point images is a
ruled hypersurface of bend line images emanating from f(v). In the case of d = 2
above, hyper-cones are simply two rays, leading to disjoint line segments of bend
points. For d = 3 the set of bend points is a standard cone-like surface. Mapping
generally to R

d, the set is a ruled hypersurface of rays emanating from a point.

5. Split Points

Bend lines locally satisfy the boundary around a vertex with a single crease. We
want to find the bend point on a bend line farthest from the vertex that remains
nonexpansive with the rest of the boundary. We call such a point a split point.

Definition. (Split Points) Given polygon P with valid boundary mapping f : ∂P →
R

d and vertex v, contractive under f with every visible nonadjacent vertex, adjacent
to two vertices {u,w} contractive under f , define p to be a split point of (P, f, v),
q to be its split point image, and x to be its split end if

(1) p is a bend point of (P, f, v), with q its bend point image;
(2) ‖p− i‖ ≥ ‖q − f(i)‖ for i ∈ V (P );
(3) ‖p− x‖ = ‖q − f(x)‖ for some x ∈ V (P ) \ {u, v, w}; and
(4) p is visible from x.

Lemma 5. Given polygon P with valid boundary mapping f : ∂P → R
d and vertex

v adjacent to two vertices {u,w} contractive under f with v contractive under f with
any visible nonadjacent vertex, there exists a split point/image/end triple (p, q, x)
for every bend line/image pair (L,Lf ) of (P, f, v) with p ∈ L and q ∈ Lf .

Proof. Given bend line/image pair (L,Lf ) we construct (p, q, x). Parameterize L

so that p(t) is the unique point in L such that ‖p(t)− v‖ = t for t ∈ [0, ℓ] where ℓ is
the length of L; and let q(t) be the corresponding bend point image of p(t) in Lf .
For any t ∈ [0, ℓ] and vertex x, let d(t, x) = ‖p(t)− x‖ − ‖q(t)− f(x)‖. Let t∗ be
the maximum t ∈ (0, ℓ] for which d(t, x) ≥ 0 for all x ∈ V (P ), and let X be the set
of such vertices x ∈ V (P ) \ {u, v, w} for which d(t∗, x) = 0, and d(t∗ + δ, i) < 0 for
all δ ∈ (0, ε] for some ε > 0. If we can prove there exists some x ∈ X from which
p(t∗) is visible, then p = p(t∗) is a split point with q = q(t∗) its split point image,
satisfying the split point conditions by construction.

Suppose for contradiction that t∗ does not exist so that for all t ∈ (0, ℓ], d(t, x) <
0 for some x ∈ V (P ). Because d is continuous and d(0, x) ≥ 0 for all x ∈ V (P ),
there exists a vertex x′ ∈ V (P )\{u, v, w} not visible from and critical with v under
f such that d(δ, x′) < 0 for all δ ∈ (0, ε] for some ε > 0. Either x′ is in the infinite
sector C induced by ∠uvw or not. If the former, the line segment from v to x′

must cross some edge (a, b) of P and {a, b, x′, v} is critical under f by Lemma 1(b).
Since neither a nor b can be visible from v, then u and w must be in △abv, and
{u, v, w} must be critical, contradicting {u,w} contractive under f . Alternatively
x′ is not in C, and for every δ ∈ (0, ε] for some ε > 0, the line segment from p(δ)
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Figure 5. Visibility of p. If x ∈ X is not visible from v, one of
{a, b, y, z} ∈ X will be.

to x′ crosses either (v, u) or (v, w). By Lemma 1(b), d(δ, x′) ≥ 0, a contridiction,
so t∗ exists.

We now prove that p is visible from some x ∈ X . Suppose for contradiction that
p is not visible from any x ∈ X so that for each x there exists point c ∈ ∂P , the
boundary crossing closest to p on the segment from p to x. c cannot be strictly
interior to edge (v, u) or (v, w) because Lemma 1(b) implies ‖p(t∗ + δ)− x‖ =
‖q(t∗ + δ)− f(x)‖ for all d ∈ (0, ε] for some ε, a contridiction. And c cannot be
v or else ‖p(t)− x‖ = ‖q(t)− f(x)‖ for all t ∈ [0, ℓ]. So c crosses some other edge
(a, b) (see Figure 5). Then Lemma 1(b) implies ‖p− i‖ = ‖q − f(i)‖ for i ∈ {a, b},
and the contrapositive of Lemma 1(a) implies for at least one vertex i ∈ {a, b},
‖p(t∗ + δ)− i‖ < ‖q(t∗ + δ)− f(i)‖ for all δ ∈ (0, ε] for some ε > 0. Without loss
of generality assume i = a. Because a ∈ X , p cannot be visible from a. Let d ∈ ∂P

be the boundary crossing closest to p on the segment from p to a. There must exist
some vertex y in triangle △acp from which p is visible because the boundary of the
polygon entering the triangle at d must return to a without crossing edge (c, p).
By the same argument, at least one of {y, b} is in X , and since p is visible from y,
b ∈ X . Replacing (b, e, z) for (a, d, y) in the argument above, one of {y, z} is in X .
But p is visible from both, a contradiction. �

Lemma 6. Given polygon P with valid boundary mapping f : ∂P → R
d and vertex

v, contractive under f with every visible nonadjacent vertex, adjacent to two vertices
{u,w} contractive under f , a split point/image/end triple of (P, f, v) exists and can
be identified in O(d|V (P )|) time.

Proof. This result follows directly by choosing any bend line/image pair of (P, f, v)
according to Lemma 4, then constructing the split point/image/end triple specified
by Lemma 5. Choosing a bend line/image pair can be done in O(d) time. Con-
structing the split point/image/end triple requires a d-dimensional comparison at
each vertex yielding total construction time O(d|V (P )|). �

6. Partitions

To find an overall solution to the hole problem, we will repeatedly split a polygon
in half, solve each piece recursively, and then join the pieces back together. Specifi-
cally, we want to find a partition consisting of two partition polygons together with
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respective boundary mappings such that: the partition polygons exactly cover the
original polygon; the partition polygons intersect, and only on their boundaries;
each partition function maps the partition polygon boundaries into the same di-
mensional space as the original function; the original boundary mapping of the
polygon boundary is preserved by the partition functions; the intersection of the
partition polygons map to the same place under both partition functions; and the
partition functions are valid.

Definition. (Valid Partition) Given polygon P and valid boundary mapping f :
∂P → R

d, define (P1, P2, f1, f2) to be a valid partition of (P, f) if the following
properties hold:

(1) P1, P2 polygons with P = P1 ∪ P2; (2) P1 ∩ P2 = ∂P1 ∩ ∂P2 = L 6= ∅;

(3) f1 : ∂P1 → R
d, f2 : ∂P2 → R

d; (4) f(p) =

{

f1(p) p ∈ ∂P ∩ ∂P1,

f2(p) otherwise;
(5) f1(p) = f2(p) for p ∈ L; (6) f1, f2 valid.

7. Algorithm

Theorem. Given polygon P and boundary mapping f : ∂P → R
d, d ≥ 2 non-

straight at finitely many boundary points, an isometric mapping g : P → R
d with

g(∂P ) = f(∂P ) exists if and only if f is valid. A solution can be computed in
polynomial time.

The theorem implies that the necessary condition in Lemma 2 is also sufficient.
Our approach is to iteratively divide P into valid partitions and combine them
back together. We partition non-triangular polygons into smaller ones differently
depending on which of two properties (P, f) satisfies. First we show that (P, f)
satisfies at least one of these properties.

Lemma 7. For every polygon P with |V (P )| > 3 and valid boundary mapping
f : ∂P → R

d, either (a) there exist two nonadjacent vertices {u, v} critical under f
and visible from each other, or (b) there exists a vertex v ∈ V (P ) adjacent to two
vertices {u,w} contractive under f , or (c) both exist.

Proof. Suppose for contradiction that there exists some (P, f) such that no two
nonadjacent vertices critical under f are visible from each other and no vertex is
adjacent to two vertices contractive under f . Consider any vertex v which, by
the contrapositive of the latter condition, will be adjacent to two vertices {u,w}
critical under f . Since |V (P )| > 3, u and v are nonadjacent and cannot be visible
from each other, so there must be at least one other distinct vertex x interior to
△uvw visible from vertex v. But since x is nonexpansive with {u, v, w} under f ,
{x, u, v, w} must be critical under f , a contradiction. �

Lemma 8. Consider polygon P with valid boundary mapping f : ∂P → R
d con-

taining nonadjacent vertices {u, v} critical under f with u visible from v. Construct
polygon P1 from the vertices of P from u to v, and P2 from the vertices of P from v

to u. Construct boundary mapping functions f1 : ∂P1 → R
d, f2 : ∂P2 → R

d so that
f1(x) = f(x) for x ∈ V (P1), f2(x) = f(x) for x ∈ V (P2), with f1, f2 mapping edges
of P1, P2 to congruent line segments. Then (P1, P2, f1, f2) is a valid partition.

Proof. Because P1 and P2 are constructed by splitting P along line segment L ⊂ P

from u to v, P = P1∪P2 and L = P1∩P2 = ∂P1∩∂P2, satisfying properties (1) and



FILLING A HOLE IN A CREASE PATTERN 9

(2) of a valid partition. Property (3) is satisfied by definition. Property (4) holds
because f is valid, {u, v} is critical, and points in L are nonexpansive with points in
∂P1 and ∂P2 by Lemma 1(a). Property (5) holds by construction. Lastly, Property
(6) holds because f1, f2 satisfy the conditions in Lemma 3 by construction. �

Lemma 9. Consider polygon P with valid boundary mapping f : ∂P → R
d and

vertex v ∈ V (P ), contractive under f with every visible nonadjacent vertex, adjacent
to two vertices {u,w} contractive under f . Let (p, q, x) be a split point/image/end
triple of (P, f, v). Construct polygon P1 from p and the vertices of P from v to x,
and P2 from p and the vertices of P from x to v. Construct boundary mapping
functions f1 : ∂P1 → R

d, f2 : ∂P2 → R
d so that f1(x) = f(x) for x ∈ V (P1) \ p,

f2(x) = f(x) for x ∈ V (P2) \ p, f1(p) = f2(p) = q, with f1, f2 mapping edges of
P1, P2 to congruent line segments. Then (P1, P2, f1, f2) is a valid partition.

Proof. Because P1 and P2 are constructed by splitting P along two line segments
fully contained in P , P = P1 ∪ P2 and P1 ∩ P2 = ∂P1 ∩ ∂P2, satisfying properties
(1) and (2) of a valid partition. Property (3) is satisfied by definition. Property
(4) holds because (P, f) is valid, V (P1) and V (P2) are nonexpansive, with adjacent
vertices critical under f by definition of a split point/image, and points in the
new line segments are nonexpansive with points in ∂P1 and ∂P2 by Lemma 1(a).
Property (5) holds by construction. Lastly, Property (6) holds because f1, f2 satisfy
the conditions in Lemma 3 by construction. �

Next, we establish the base case for our induction. Specifically a triangle with
a valid boundary mapping of its boundary has a unique isometric mapping of its
interior consistent with the provided boundary condition.

Lemma 10. Given polygon P with |V (P )| = 3 and valid boundary mapping f :
∂P → R

d, there exists a unique isometric mapping g : P → R
d such that g(B) =

f(B).

Proof. Because f is valid, the vertices of P are critical under f . ∂P and f(∂P )
are congruent triangles, so their convex hulls are isometric. Specifically, if P with
vertices {u, v, w} is parameterized by P = {p(a, b) = a(v− u)+ b(w− u)+u | a, b ∈
[0, 1], a+ b ≤ 1}, then the affine map g : P → R

d defined by

g(p(a, b) ∈ P ) = a[f(v)− f(u)] + b[f(w)− f(u)] + f(u)

is a unique isometry for g(B) = f(B). �

Lastly we show that we can combine isometric mappings of valid partitions into
larger isometric mappings.

Lemma 11. Consider polygon P with valid boundary mapping f : ∂P → R
d, with

valid partition (P1, P2, f1, f2). Given isometric mappings g1 : P1 → R
d, g2 : P2 →

R
d with g1(∂P1) = f1(∂P1), g2(∂P2) = f2(∂P2), the mapping g : P → R

d defined
below is also isometric, with g(∂P ) = f(∂P ):

g(p ∈ P ) =

{

g1(p) p ∈ P1,

g2(p) otherwise.

Proof. First, g(∂P ) = f(∂P ) because the partition is valid. Consider the short-
est path K between points p, q ∈ P composed from a finite set of line segments.
Suppose for contradiction that g(K) is not the same length as K. Every point in
K either lies in P1, P2, or both by property (1) of a valid partition. Split K into
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a connected set of line segments, each segment fully contained in either P1 or P2

with endpoints in P1 ∩ P2. Because g1 and g2 are isometric, these line segments
remain the same length under g. Further, the endpoints of adjacent segments map
to the same place under g1 and g2 by definition of a valid parition. The total
length of g(K) is the sum of the lengths of the intervals, the same length as K, a
contradiction. �

Now we are ready to prove the theorem.

Proof. Lemma 2 implies that f is valid if g exists. We show g exists for valid f by
construction. Partition (P, f) with |V (P )| > 3 as follows. If (P, f) contains two
nonadjacent vertices {u, v} critical under f and visible from each other, divide using
Routine 1: partition using the construction in Lemma 8. Otherwise divide using
Routine 2: partition using the construction in Lemma 9, applying Routine 1 to
each partitioned polygon immediately after. Note that both polygons generated by
the construction from Lemma 9 are guaranteed to contain two nonadjacent vertices
critical under f and visible from each other, namely {u, p} and {w, p}, so each
can be divided using Routine 1. Recursively fill each partitioned polygon with an
isometric mapping of their interior and combine them into a mapping g : P → R

d

using the construction in Lemma 11. Since the partitions are valid, g is isometric
with g(∂P ) = f(∂P ). Construct isometries for triangular polygons, the base case
of the recursion, according to Lemma 10.

To show the recursion terminates, consider state i where P is partitioned into a
set of ni polygons Pi = {P1, . . . , Pni

}. Define potential Φi =
∑

Pj∈Pi
(|V (Pj)| − 3)

with Φ0 = |V (P )|−3. Partitioning a polygon using Routine 1 yields state i+1 with
Φi+1 = Φi−1: Lemma 8 adds two vertices, the number of polygons increases by one,
and 2− 3 = −1. Partitioning a polygon using Routine 2 also yields Φi+1 = Φi − 1:
Lemma 9 adds four vertices, Lemma 8 adds two vertices with each application, the
number of polygons increases by three, and 4+2×2−3×3 = −1. Lemma 7 ensures
that one of the routines can always be applied to any non-triangular polygon. When
Φi = 0, all partitioned polygons are triangles and no polygon can be partitioned
further. The iteration terminates after Φ0 calls to either routine.

Let n be the number of vertices |V (P )| in the input polygon. At the start of
the algorithm, all critical vertex pairs can be identified naively in O(dn2) time.
Application of either routine requires at most O(dn) time, and both routines can
update and maintain new critical vertex pairs in partition polygons at no additional
cost. Each routine is called no more than O(n) times. Only a linear number of
triangles are produced and the construction of each gi takes constant time. The
running time of the entire construction is thus O(dn2), which is polynomial. �

8. Applications

Much of the intuition for this algorithm was developed while working on the de-
sign of various three-dimensional tessellations, specifically while working on Maze
Folding [Demaine et al. 10] and a private commission designing an origami chan-
delier for Moksa, a restaurant in Cambridge, MA (see Figure 6). A version of
this algorithm was implemented for flat-folds (d = 2) in 2010 using MATLAB (see
Figure 7). We leave an implementation of this algorithm in 3D for future work.
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Figure 6. A three-dimensional abstract tessellation formed by
tiling five different square units, each corner in either a binary low
or high state. Units were designed using this algorithm having
common boundaries, connected to form single sheet tessellations.

9. Conclusion

We have proposed an algorithm for finding isometric mappings consistent with
prescribed boundary mappings that runs in polynomial time. This algorithm was
inspired by the universal molecule construction; instead of insetting an input poly-
gon perimeter at a constant rate from all edges at once, our algorithm insets each
vertex serially as far as possible. Our construction cannot find all possible isometric
solutions, though the algorithm provides a rich family of solutions given choice of
bend line and image with each application of Routine 2: two choices when d = 2
and an infinite set of choices for d > 2. This algorithm can be generalized by not in-
setting vertices all the way to split points, and by solving vertices locally with more
than one crease at a vertex. We conjecture that adding such flexibility would allow
construction of the entire space of isometric solutions following a similar procedure
to our construction.

Recall that the proposed algorithm does not address self intersection and cannot
guarantee the existence of a valid layer ordering for the isometries found; however,
because the space of solutions is large for a generic input, one might be able to
construct non-self-intersecting solutions by directing the algorithm’s decisions ap-
propriately through the solution space. Additionally, the proposed algorithm only
addresses instances for f folded at finitely many points. It is conceivable that a
similar algorithm could be used to design curved foldings. We leave these as open
problems.
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Figure 7. Various solutions for the same input polygon and
boundary mapping found by our MATLAB implementation for
d = 2.
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