
DESIGNER K3 SURFACES

BRENDAN HASSETT

We will focus our attention on a limited part of the story. Our goal: how do we produce
K3 surfaces (over Q, or a number field) with certain specifications?

By specifications, we might want them for purposes of modularity or L-functions, etc.

1. Periods of K3 surfaces

We begin with the story over C. Let X be a complex projective K3 surface: a smooth
projective surface, simply connected (π1(X) = {1}) and Kx = −c1(TX) = 0. Pick ω a
holomorphic 2-form realizing a trivialization, so ω ∈ Γ(Ω2

X); this gives you an isomorphism

O ∼−→ Ω2
X . So a K3 surface admits a holomorphic symplectic structure. The form ω is closed,

dω = 0, then ω ∈ H2(X,C).
Since π1(X) = {1}, we have Γ(Ω1

X) = 0. Therefore, the Hodge numbers (using duality)
are

1
0 0

1 ∗ 1
0 0

1

In particular, H1(OX) = 0 and H2(Ω1
X) = H1(Ω2

X) = 0. The mystery number is determined
by Riemann–Roch:

2 = χ(OX) =
c1(X)2 + c2(X)

12
and c1(X) = 0 so c2 = 24, so the mystery number is ∗+ 4 = 24 has ∗ = 20.

Let Λ = H2(X,Z) as a lattice with respect to the intersection form (, ). The signature of
this lattice is (3, 19) from the Hodge numbers; it is unimodular and even, from the adjunction
formula (liar’s proof: if D is a curve, then D ·D = 2g − 2 is even). This information about
the lattice implies that

Λ =

(
0 1
1 0

)
⊕ 3⊕ (−E8)⊕2.

Fix a basis e1, . . . , e22 of Λ∗ = H2(X,Z). Then the periods of X are

ωj =

∫
ej

ω

for j = 1, . . . , 22. Another way to think about this is to take ω =
∑22

j=1 ωje
j where ej is the

dual basis in Λ.
The form is only determined up to scalar, so [ω] ∈ P1(Λ⊗ C), so

[ω] ∈ DΛ ⊂ P(Λ⊗ C)
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where
DΛ = {τ ∈ Λ⊗ C : (τ, τ) = 0 and (τ, τ) > 0}.

This follows from the fact that the square of a form cannot exist by hypothesis, and the
second is an orientation condition that we suppress. We call this τ(X) = [ω]. If we vary the
basis, Aut(Λ) act on DΛ via change of basis.

2. Néron–Severi groups

To achieve our goal, we need to now turn to a more precise analysis of how the periods
relate to the desired specifications. We begin with the Néron–Severi groups via periods. The
Lefschetz (1, 1)-theorem states that

NS(X) = H2(X,Z) ∩H1(Ω1
X)

= {D ∈ H2(X,Z) : (D,ω) = 0}.
The hyperplane class is nontrivial in NS(X).

Example 2.1. Suppose NS(X) = Zh, h a polarization (a choice of hyperplane class). We
consider h⊥ ⊆ Λ. If (h, h) = 2g − 2 with g ≥ 2, then Λg = h⊥ has rank 21 and looks like

Λg ' (2− 2g)⊕
(

0 1
1 0

)⊕2

⊕ (−E8)⊕2.

We have (ω, h) = 0, so
P(Λg ⊗ C) ⊂ P(Λ⊗ C)

and inside each we have

DΛg = {τ : (τ, τ) = 0, (τ, τ) > 0} ⊂ DΛ

and τ(X, h) ∈ DΛg . The fact that the remaining part of lattice is orthogonal to the hyper-
plane reduces the side of the lattice and correspondingly constrains the periods.

What are “natural” discrete groups acting on DΛg? We might take

Aut(Λ, h) = {α ∈ Aut(Λ) : α(h) = h}.
(You might allow h to change sign.) We could also take Aut(Λg) but not all lift to Λ. So
we should remain flexible depending on the application we have in mind. (The latter gives
isogeny classes, coming from a bigger group.)

Example 2.2. Let N ⊂ Λ be a saturated sublattice. Hodge tells us a constraint on the
signature: sgn(N) = (1,m). Let N⊥ ⊂ Λ be the complement. Then we can play the same
game as before: we look at

P(N⊥ ⊗ C) ⊂ P(Λ⊗ C)

and the corresponding period domains

DN⊥ ⊂ DΛ

taking a linear slice as in the previous example. In this case, we have discrete groups

{γ ∈ Aut(Λ) : γ|N = 1}
or

{γ ∈ Aut(Λ) : γ(N) ⊆ N}
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or just Aut(N⊥).
In the second case, the automorphisms might not act faithfully. For example, let N =(
2 0
0 −2d

)
; solving Pell’s equation gives us a cyclic group of automorphisms, some cyclic

subgroup will lift to automorphisms of the lattice, but we do not see them on the level of
periods.

3. Torelli Theorems

(1) K3 surfaces are determined by the periods. Suppose X1 and X2 are K3 surfaces
admitting an isometry (isomorphism of lattices)

φ : H2(X1,Z)
∼−→ H2(X2,Z)

with φ([ω1]) = [ω2]. Then X1 ' X2 (but this isomorphism need not necessarily
induce φ).

(2) All periods arise: every τ ∈ DΛ arises from a K3 surface. More precisely, every
τ ∈ DN⊥ as in the example, arises from a K3 surface X admitting a sublattice
N ⊆ NS(X).

(3) Let MN be a moduli space of K3 surfaces with a sublattice N ⊆ NS(X) with h ∈
NS(X) a polarization. Then the period map τ maps

τ :MN → Γ\DN⊥

where Γ is an arithmetic group, as in the examples. Both sides of this map have
the same dimension; the quotient Γ\DN⊥ is quasiprojective (Baily–Borel, a Type IV
Shimura variety); the map τ is algebraic (using hyperbolicity results of Borel). As a
result, both sides (and the map τ) can be defined over a number field; in many cases,
we know this number field explicitly.

A dimension count: we specified the signature sgn(N) = (1,m). So the dimension over C
of DN is 20− (1 +m) = 19−m; as N gets bigger, the dimension gets smaller.

4. Geometry from the periods

Let (X, h) be a polarized K3 surface. We can read off the following from τ(X) = [ω].

• NS(X) ∈ h.
• Effective curves Eff(X), which elements of the Néron–Severi group are defined by

actual curves: it is the monoid generated by (Riemann–Roch)

{D ∈ NS(X) : D2 = (D,D) ≥ −2, (D, h) > 0}.

• All of the smooth rational curves: we R = [P1] if and only if R ∈ Eff(X) is indecom-
posable and R2 = −2.
• Elliptic fibrations: X is elliptic if and only if NS(X) represents 0 (in the sense of

quadratic forms).
• Automorphisms:

Aut(X) = {ρ ∈ Aut(Λ) : ρ∗([ω]) = [ω] and ρ∗ Eff(X) = Eff(X)}.
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Example 4.1. If X ⊃ R ' P1, we can define a reflection

ρR : H2(X,Z)
∼−→ H2(X,Z)

γ 7→ γ + (γ,R)R

This reflection is an automorphism of the Hodge structure but is not an automorphism of
X. (The reflection messes with Eff(X).)

Example 4.2. Let N = Zh+ Zf be the lattice with intersection pairing

(
2 5
5 2

)
. We have h

ample, it does not represent 0,−2. We have NS(X) = N , Aut(X) = 〈ρ1, ρ2〉 with ρ1(γ) =
−γ + (γ, h)h and ρ2(γ) = −γ + (γ, f)f .

Homework problem: Let X = {F12 = F21 = 0} ⊆ P2×P2, cut out by equations of bidegree
(1, 2) and (2, 1).

5. Arithmetic examples with lots of structure

We have rk(NS(X)) ≤ 20. When there is equality, the period domain is zero-dimensional.
(By the Torelli theorem, such a K3 surface is defined over a number field.)

Suppose that X is defined over Q and NS(X) ' Z20 and all generators are defined over
Q. This is so restrictive that maybe X does not even exist. (Even the Fermat quartic
w4 + x4 = y4 + z4 fails.) We have T (X) = NS(X)⊥ ⊂ Λ is a rank 2 lattice, positive
definite. There is an equivalence between rank 20 K3 surfaces over C and oriented even
positive definite rank two lattices (this goes back to Shafarevich and Shioda). But the other
conditions imply that T (X) is primitive with class number 1. There are exactly 13 of these!

Example 5.1. Take the double cover of P2 branched over the following configuration:
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This is given by the desingularization.

z2 = xy(x− 1)(y − 1)(x− y)

(there is also branching at infinity).

The summary (Elkies–Schuett):

(1) For each of the 13 examples, there exists an elliptic K3 surface X over Q with
NS(X) = Z20 and T (X) as specified.

(2) You can classify the Q-isomorphism types.
(3) (Livné) One can prove modularity of the L-functions.

As a final application, let X be a K3 surface with maximal nonsymplectic automorphisms.
Most of these are defined over Q, and you can prove the modularity of their L-function,
basically because of the CM structure given by the automorphism.
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