
FUNCTORIALITY

FREYDOON SHAHIDI

First, the class of groups we work with are connected reductive algebraic groups, for
example G = GLn. In general, we would work over a global field but today we work over k
a number field, and let Ak be the adeles over k.

Second, we consider automorphic forms: from f , a complex-valued function on the upper
half-plane, we define a complex-valued function φf on GL2(AQ). Letting GL2(AQ) act, we
end up with a representation, so this sits naturally in the space

L2(ZG(k)\G(Ak), ω)

of square-integrable functions which transform under the center Z according to the character
ω. We look inside the space L2

0 of cusp forms, vanishing at the cusps: let P = MN ⊆ G be
a parabolic subgroup, and insist that∫

N(k)\N(A)
φ(ng) dn = 0

for almost all g ∈ G. An irreducible representation π in L2
0 decomposes as a tensor product

π = ⊗vπv where πv is a representation of G(kv), so we need to understand representations
of groups over local fields; this is necessary, but not sufficient, as automorphic forms contain
some global constraints and not all local representations will necessarily occur. These are
often deep questions (e.g., the Ramanujan–Selberg conjecture).

Third, we consider L-groups. Langlands computed constant terms of Eisenstein series
and saw a natural product of zeta functions (L-functions), and this led him to the notion of
L-groups. Let T be a maximal torus over k. Let X = X∗(T ) be the group of characters of

T (k), and let X∨ = X∗(T ) be the group of cocharacters, maps from k
∗ → T (k). Let Σ be

the roots of T , the nonzero eigenfunctions of T (k) on the Lie algebra g(k). Dually, there is
also a notion of coroots Σ∨.

From this we have the data (X,Σ, X∨,Σ∨). Let ∆ ⊆ Σ be the simple roots; then we also
have the data (X,∆, X∨,∆∨), from which one can recover the group. Taking the dual data
(X∨,Σ∨, X,Σ), we obtain a corresponding dual group G∨, a complex group. For example,
we can work things out explicitly for G = GL2, and we find that the dual group gives us
back GL2.

Suppose now that G is semisimple, so G or Gder has finite center. Let C = (〈αi, αj〉) be
the Cartan matrix, where

〈αi, αj〉 =
2κ(αi, αj)

κ(αj, αj)
,

where κ is the Killing form. The transpose tC = C∨ is the matrix for the dual data. For
G = Sp2n we have G∨ = SO2n+1 and vice versa. Over a nonalgebraically closed field, we
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keep track of also the Galois action, and we define LG = G∨ o Γk where Γk = Gal(k/k), or
sometimes replacing Γk by the Weil group.

Let R be the root lattice, the Z-lattice generated by the roots in Rn (n is then the rank
of the semisimple group G). Let Q be the weight lattice of all χ ∈ Rn such that 〈χ, α〉 ∈ Z
for all α ∈ R. We have Q ⊇ X ⊇ R. If G is simply connected, then X = Q; if G is adjoint,
then X = R.

We then have the following table.

G G∨

GLn GLn(C)
SO2n SO2n(C)

SO2n+1 Sp2n(C)
GSpin2n GSO2n(C)

GSpin2n+1 GSp2n(C)
GSpin5 = GSp4 GSp4(C)

The latter is because of an accidental isomorphism.
Now we discuss unramified representations. Let K be a maximal compact subgroup of

G(kv), where k = kv is a p-adic field. Let T be a maximal torus. By the Iwasawa decom-
position, we have G(k) = T (k)U(k)K with U a maximal unipotent subgroup. Let π be an
irreducible admissible representation of G(k); we say that π is unramified (or spherical) if
there exists a w in the representation space of π that is fixed by K; in particular, if π is
irreducible then there is a unique line going through w that is invariant under π(K). If π
is unramified, then π is a constituent of I(χ) (induced representation) from χ a character of
T (k), so

I(χ) = {f(tug) = χ(t)δ1/2(t)f(g) : f is smooth complex-valued on G}.
If χ is unramified, then χ restricted to oT (k) = T (k) ∩ K is identically 1; so unramified
characters are homomorphisms from

Λ = T (k)/oT (k)→ C∗.

Let Xun be the group of characters of Λ, and note that Λ = X∨(T ) = X(T∨). Then

Hom(Λ,C∗) = Hom(X(T∨),C∗) = T∨.

So T∨ then becomes the main object of study in defining L-functions.
The conclusion: unramified characters are parametrized by T∨; let W be the Weyl group,

acting as χw(t) = χ(w−1tw), then

Xun/W ↔ T∨/W∨ = G∨-conjugacy classes of T∨.

Thus I(χ) and I(χw) have the same constituents.
Langlands realized, by interpreting constant terms of Eisenstein series as products of L-

functions, that if r is a finite-dimensional representation of LG, and s ∈ C, and as above
we obtain from πv a conjugacy class c(πv) in T∨/W∨, we can write down the unramified
L-function as

L(s, πv, r) = det(1− r(c(πv))q−sv )−1

where qv is the number of elements in the residue field of k. (Unfortunately, there are a lot
more cuspidal representations π of G(Ak) than there are ρ representations of Wk.)
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Let f(z) =
∑∞

n=1 ane
2πinz be a cusp form with respect to the classical group Γ0(N) of

weight k. Let

ap = p(k−1)/2(αp + α−1p ).

Then f corresponds to a representation π = ⊗pπp, and πp corresponds to the conjugacy class(
αp 0
0 α−1p

)
; if r is the standard representation of GL2(C), then the unramified L-function is

(1− αpp−s)−1(1− α−1p p−s)−1.

Now we can define functoriality. Let G,G′ be connected reductive groups, where G′ is
quasisplit. Suppose we have a homomorphism φ : LG → LG′. Let π = ⊗vπv be a cuspidal
representation of G(Ak); recall that at almost all primes, v, the representation πv corresponds
to conjugacy classes c(πv). Then we can consider the image φ({c(πv)}) of conjugacy classes
in LG′, and we can ask: do there exist cuspidal automorphic representations Π = ⊗vΠv on
G′(Ak) that agree with these conjugacy classes at almost all v? Whether or not this appears
in an L2-space is a very deep question. Functoriality implies equality of L-functions, root
numbers, etc. (We want further to have the second projetion of φ(x,w) be still w, so we
require the map φ to be a so-called L-homomorphism.)

Most of the time, G′ = GLn; in this case, by strong multiplicity one, if such a representation
Π exists, then it is necessarily unique. In other cases, this representation may not be unique,
so we group them together into L-packets.

Here are some examples. Symmetric powers of GL2. Let G = GL2, and consider

φ = Symm : GL2(C)→ GLn+1(C)

defined as follows: if P (X, Y ) is a form of degree m and g ∈ GL2(C) then P1(X, Y ) =
P ((X, Y )g), and expressing coefficients gives you Symm g. In this context, the question of
functoriality asks: is there a functorial transfer Symm of representations?

Theorem. Symm is functorial for m = 2 (Gelbart–Jacquet, 1978), m = 3 (Kim–Shahidi,
2002), m = 4 (Kim, 2002).

Unfortunately, at this point the image (of the local Galois representations) may not be
solvable, so it is likely to be very hard for m ≥ 5. Each case of functoriality would have
many important consequences.

Now we also have the local Langlands correspondence by GLn by Harris–Taylor, Henniart,
Scholze; this allows you to make local candidates, so the hard part is to prove that the
corresponding global candidate is indeed automorphic.

Over kv, the representation πv gives ρv a two-dimensional representation of W ′
kv

, so we
have a homomorphism

Wkv

ρv−→ GL2(C)
Symm

−−−→ GLm+1(C).

and by the local Langlands correspondence, Symm πv corresponds to Symm ρv. Then the
question is whether or not ⊗v Symm πv is automorphic; and it is known for m = 2, 3, 4.

Suppose π comes from a Galois group. Then π corresponds to ρ : Γ → GL2(C), and we
can postcompose using Symm to land in GLm+1(C). The representation Symm ρ of Γ does
come from an automorphic representation of GLm+1(A) for all m (Kim).
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For πv corresponding to the semisimple conjugacy class

(
αv 0
0 βv

)
of GL2(C), then

Symm

(
αv 0
0 βv

)
= diag(αmv , α

m−1
v βv, . . . , β

m
v ).

By work of Luo–Rudnick–Sarnak, while the Ramanujan conjecture demands |αv| = |βv| = 1,

Kim–Shahidi proved q
−5/34
v < |αv|, |βv| < q

5/34
v using Sym3.

If H is the upper half-plane and Γ is a congruence subgroup, inside L2(Γ\H) consider the
eigenvalues of the Laplace operator ∆ = −y2(d2/dx2 +d2/dy2); Selberg conjectured that the
smallest nonzero eigenvalue satisfies

1/4 ≤ λ1(Γ\H);

the best known result is due to Blomer–Brumely 2012 and Kim–Sarnak 2002 over Q that

λ1(Γ\H) ≥ 1/4− (7/64)2 = 0.238;

this already leads to many nice results. And we have

q−7/64v < |αv|, |βv| < q7/64v .

This was all just for GL2. Now let G be a group whose L-group is classical, so G =
SO, Sp,U,GSpin. Then LG ↪→ GLN(C), and functoriality is proven in these cases. Using
the trace formula, these have been proven by Arthur for the first two G = SO, Sp, and by
Mok and others for G = U. This has consequence for the entirety of the corresponding
L-functions: for example, if π is a repressentation of Sp4, then the L-functions LS(s, π, spin)
of degree 4 is entire and LS(s, π, std) of degree 5 has poles only at s = 1, and this extends
to several symmetric powers as well.

The Langlands “Beyond Endoscopy” philosophy indicates that we should use the trace
formula to further investigate functoriality.
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