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First, the class of groups we work with are connected reductive algebraic groups, for
example G = GLn. In general, we would work over a global field but today we work over k
a number field, and let Ak be the adeles over k.

Second, we consider automorphic forms: from f , a complex-valued function on the upper
half-plane, we define a complex-valued function φf on GL2(AQ). Letting GL2(AQ) act, we
end up with a representation, so this sits naturally in the space

L2(ZG(k)\G(Ak), ω)

of square-integrable functions which transform under the center Z according to the character
ω. We look inside the space L2

0 of cusp forms, vanishing at the cusps: let P = MN ⊆ G be
a Levi subgroup, and insist that ∫

N(k)\N(A)
φ(ng) dn = 0

for all g ∈ G. A representation π in L2
0 decomposes as a tensor product π = ⊗vπv where

πv is a representation of G(kv), so we need to understand representations of groups over
local fields; this is necessary, but not sufficient, as automorphic forms contain some global
constraints and not all local representations will necessarily occur. These are often deep
questions.

Third, we consider L-groups. Langlands computed constant terms of Eisenstein series and
saw a natural factorization, and this led him to the notion of L-group. Let T be a maximal
torus over k. Let X = X∗(T ) be the group of characters of T (k), and let X∨ = X∗(T ) be

the group of cocharacters, maps from k
∗ → T (k). Let Σ be the roots of T , the nonzero

eigenfunctions of T (k) on the Lie algebra g(k). Dually, there is also a notion of coroots Σ∨.
From this we have the data (X,Σ, X∨,Σ∨). Let ∆ ⊆ Σ the simple roots; then we also

have the data (X,∆, X∨,∆∨), from which one can recover the group. Taking the dual data
(X∨,Σ∨, X,Σ), we obtain a corresponding dual group G∨ the dual group, a complex group.
For example, we can work things out explicitly for G = SL2, and we find that the dual group
gives us back SL2.

Suppose now that G is semisimple, so G = Gder, finite center. Let C = (〈αi, αj〉) the
Cartan matrix, where

〈αi, αj〉 =
2κ(αi, αj)

κ(αj, αj)
.

The transpose tC = C∨ the matrix for the dual data. For G = Sp2n we have G∨ = SO2n+1

and vice versa. Over a nonalgebraically closed field, we keep track of also the Galois action,
and we define LG = G∨ o Γk where Γk = Gal(k/k), or sometimes replacing Γk by the Weil
group.
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Let R be the root lattice, the Z-lattice generated by the roots in Rn (n is then the rank
of the semisimple group G). Let Q be the weight lattice, χ ∈ Rn such that 〈χ, α〉 ∈ Z for all
α ∈ R. We have Q ⊇ X ⊇ R. If G is simply connected, then X = Q; if G is adjoint, then
X = R.

We then have the following table.

G G∨

GLn GLn(C)
SO2n SO2n(C)

SO2n+1 Sp2n(C)
GSpin2n GSO2n(C)

GSpin2n+1 GSp2n(C)
GSpin5 = GSp4 GSp4(C)

The latter is because of an accidental isomorphism.
Now we discuss unramified representations. Let K be a maximal compact subgroup of

G(kv), where k = kv is a p-adic field. Let T be a maximal torus. By the Iwasawa decompo-
sition, we have G(k) = T (k)K. Let π be an irreducible admissible representation of G(k);
we say that π is unramified (or spherical) if there exists a w in the representation space
of π that is fixed by K; in patricular, if π is irreducible then there is a unique w that is
1-dimensional. If π is unramified, then π is a constituent of I(χ) (induced representation),
χ a character of T (k), so

I(χ) = {f(tug) = χ(t)δ1/2(t)f(g) : f is smooth on G}.

If χ is unramified, then χ restricted to oT (k) = T (k) ∩ K is identically 1; so unramified
characters are homomorphisms

Λ = T (k)/oT (k)→ C∗.

Let Xun be the group of characters of Λ, and let Λ = X∨(T ) = X(T∨). Then

Hom(Λ,C∗) = Hom(X(T∨),C∗) = T∨.

So T∨ then becomes the main object of study in defining L-functions.
The conclusion: unramified characters are parametrized by T∨; let W be the Weyl group,

acting χw(t) = χ(w−1tw), then

Xun/W ↔ T∨/W∨ = G∨-conjugacy classes of T∨.

Thus I(χ) and I(χw) have the same constituents.
Langlands realized, by interpreting constant terms of Eisenstein series, that if r is a finite-

dimensional representation of LG, and s ∈ C, since from πv we obtain a conjugacy class
C(πv) in T∨/W∨, and so we can write down the unramified L-function

L(s, πv, r) = det(1− r(C(πv))q
−s
v )−1

where qv is the number of elements in the residue field of k.(Unfortunately, there are a lot
more cuspidal representations π of G(Ak) than there are ρ representations of Wk.)

Let f(z) =
∑∞

n=1 ane
2πinz be a cusp form on the classical group Γ0(N) of weight k. Let

an = p(k−1)/2(αp + α−1p ).
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Then f corresponds to a representation π = ⊗pπp, and πp corresponds to the conjugacy class(
αp 0
0 α−1p

)
; if r is the standard representation of GL2(C), then the unramified L-function is

(1− αpp−s)−1(1− α−1p p−s)−1.

Now we can define functoriality. Let G,G′ be connected reductive groups, where G′ is
quasisplit. Suppose we have a homomorphism φ : LG → LG′. Let π = ⊗vπv be a cuspidal
representation of G(Ak); recall that at almost all primes, v, the representation πv corresponds
to conjugacy classes C(πv). Then we can consider the image φ({C(πv)}) of conjugacy classes
in LG′; we can ask does there exist a cuspidal automorphic representation Π = ⊗vΠv an
automorphic representation on G′(Ak) that agrees with these conjugacy classes at almost all
v? Whether or not this appears in an L2-space is very deep question. Functoriality implies
equality of L-functions, root numbers, etc. We want further to have the second projetion of
φ(x,w) is still w, so we require the map φ to be a so-called L-homomorphism.

Most of the time, G′ = GLn; in this case, by strong multiplicity one, if such a representation
Π exists, then it is necessarily unique. In other cases, this representation may not be unique,
so we group them together into L-packets.

Here are some examples. Symmetric powers of GL2. Then G = GL2, and consider

φ = Symm : GL2(C)→ GLn+1(C)

defined as follows: if P (X, Y ) is a form of degree m and g ∈ GL2(C) then P1(X, Y ) =
P ((X, Y )g), and expressing coefficients gives you Symm g. In this context, the question of
functoriality asks: is there a functorial transfer Symm of representations?

Theorem. Symm is functorial for m = 2 (Gelbart–Jacquet, 1978), m = 3 (Kim–Shahidi,
2002), m = 4 (Kim, 2002).

Unfortunately, at this point the image (of the local Galois representations) may not be
solvable, so it is likely to be very hard; and the depth of functoriality would have many
important consequences.

Now we also have the local Langlands correspondence by GLn by Harris–Taylor, Henniart,
Scholze; this allows you to make local candidates, so the hard part is to prove that the
corresponding global candidate is indeed automorphic.

Over kv, the representation πv gives ρv a two-dimensional representation of Wkv , so we
have a homomorphism

Wkv

ρv−→ Symm

−−−→ GLm+1(C).

and by the local Langlands correspondence, Symm πv corresponds to Symm ρv. Then the
question is whether or not Symm πv is automorphic; and it is known for m = 2, 3, 4.

Suppose π comes from a Galois group. Then π corresponds to ρ : Γ → GL2(C), and we
can postcompose using Symm to land in GLm+1(C). For the representation Symm ρ of Γ,
this does come from an automorphic representation of GLm+1(A) for all m.

For πv corresponding to the semisimple conjugacy class

(
αv 0
0 βv

)
of GL2(C), then

Symm

(
αv 0
0 βv

)
= diag(αmv , α

m−1
v βv, . . . , β

m
v ).
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By work of Luo–Rudnick–Sarnak, the Ramanujan conjecture asserts |αv| = |βv| = 1, and

they prove q
−5/34
v < |αv|, |βv| < q

5/34
v .

If H is the upper half-plane and Γ is a congruence subgroup, inside L2(Γ\H), for the
Laplace operator ∆ = −y2(d2/dx2 + d2/dy2), Selberg conjectured that the smallest nonzero
eigenvalue satisfies

1/4 ≤ λ1(Γ\H);

the best known result is due to Blomer–Brumely 2012 that

λ1(Γ\H) ≥ 1/4− (7/64)2 = 0.238;

this already leads to many nice results. And we have

q−7/64v < |αv|, |βv| < q7/64v .

This was all just for GL2. Now let G be a group whose L-group is classical, so G =
SO, Sp,U,GSpin. Then LG ↪→ GLN(C), and functoriality is proven in these cases. Using
the trace formula, these have been proven by Arthur for the first two G = SO, Sp, and by
Mok and others for G = U. This has consequence for the entirety of the corresponding
L-functions: for example, if π is a repressentation of Sp4, then the L-functions LS(s, π, spin)
of degree 4 and LS(s, π, std) of degree 5 are entire, and this extends to several symmetric
powers as well.

So the Langlands philosophy indicates that we should use the trace formula to further
investigate functoriality.
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