FUNCTORIALITY

FREYDOON SHAHIDI

First, the class of groups we work with are connected reductive algebraic groups, for
example G = GL,,. In general, we would work over a global field but today we work over k
a number field, and let A, be the adeles over k.

Second, we consider automorphic forms: from f, a complex-valued function on the upper
half-plane, we define a complex-valued function ¢y on GL2(Ag). Letting GL2(Ag) act, we
end up with a representation, so this sits naturally in the space

L*(ZG(k)\G(Ar),w)

of square-integrable functions which transform under the center Z according to the character
w. We look inside the space LZ of cusp forms, vanishing at the cusps: let P = MN C G be

a Levi subgroup, and insist that
[ omg)in=o
N(k)\N(A)

for all g € G. A representation 7 in L2 decomposes as a tensor product 7 = ®,, where
7, is a representation of G(k,), so we need to understand representations of groups over
local fields; this is necessary, but not sufficient, as automorphic forms contain some global
constraints and not all local representations will necessarily occur. These are often deep
questions.

Third, we consider L-groups. Langlands computed constant terms of Eisenstein series and
saw a natural factorization, and this led him to the notion of L-group. Let T be a maximal
torus over k. Let X = X*(T) be the group of characters of T'(k), and let XV = X,(T) be
the group of cocharacters, maps from R T(E). Let X be the roots of T', the nonzero
eigenfunctions of T(k) on the Lie algebra g(k). Dually, there is also a notion of coroots XV,

From this we have the data (X, %, XV V). Let A C X the simple roots; then we also
have the data (X, A, XV AY), from which one can recover the group. Taking the dual data
(XY, 3V, X, %), we obtain a corresponding dual group G the dual group, a complex group.
For example, we can work things out explicitly for G = SLs, and we find that the dual group
gives us back SLs.

Suppose now that G is semisimple, so G = Gqer, finite center. Let C = ((oy, o)) the
Cartan matrix, where

(o) = 2l00.)
H(aﬁ Q; )
The transpose ‘C' = CV the matrix for the dual data. For G = Sp,, we have G¥ = SOq,,11
and vice versa. Over a nonalgebraically closed field, we keep track of also the Galois action,
and we define “G' = GV x Iy where I'y, = Gal(k/k), or sometimes replacing I'y by the Weil

group.
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Let R be the root lattice, the Z-lattice generated by the roots in R™ (n is then the rank
of the semisimple group G). Let @ be the weight lattice, y € R™ such that (x, ) € Z for all
a € R. We have () O X D R. If G is simply connected, then X = @); if G is adjoint, then
X =R.

We then have the following table.

G GV
GL, L,(C)
SOq, SOgn(C)

SO2p,41 San(C)

GSpin,,, GSO,,(C)
GSpin2n+1 GSpZn(C>
GSpiny; = GSp, | GSp,(C)

The latter is because of an accidental isomorphism.

Now we discuss unramified representations. Let K be a maximal compact subgroup of
G(k,), where k = k, is a p-adic field. Let T' be a maximal torus. By the Iwasawa decompo-
sition, we have G(k) = T'(k)K. Let m be an irreducible admissible representation of G(k);
we say that 7 is unramified (or spherical) if there exists a w in the representation space
of 7 that is fixed by K; in patricular, if 7 is irreducible then there is a unique w that is
1-dimensional. If 7 is unramified, then 7 is a constituent of I(x) (induced representation),
X a character of T'(k), so

I(x) = {f(tug) = x(£)3" () f(g) : [ is smooth on G}.

If x is unramified, then x restricted to °T'(k) = T'(k) N K is identically 1; so unramified
characters are homomorphisms

A=T(k)/°T(k) — C*.
Let X, be the group of characters of A, and let A = XV(T') = X(T"). Then
Hom(A,C*) = Hom(X(TV),C*) =T"

So TV then becomes the main object of study in defining L-functions.
The conclusion: unramified characters are parametrized by TV; let W be the Weyl group,
acting x“(t) = x(w'tw), then

Xun/W < TV /WY = GY-conjugacy classes of T".

Thus I(x) and I(x") have the same constituents.

Langlands realized, by interpreting constant terms of Eisenstein series, that if r is a finite-
dimensional representation of *G, and s € C, since from m, we obtain a conjugacy class
C(m,) in TV /WY, and so we can write down the unramified L-function

L(s, 7y, 7) = det(1 — r(C(m,))q, *) "

where ¢, is the number of elements in the residue field of k.(Unfortunately, there are a lot
more cuspidal representations m of G(Ay) than there are p representations of W;.)
Let f(2) =7, a,e®™ be a cusp form on the classical group I'¢(N) of weight k. Let

an = p* V"2, + a ).
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Then f corresponds to a representation m = ®,m,, and 7, corresponds to the conjugacy class

(Oép 04(11> ; if r is the standard representation of GLy(C), then the unramified L-function is
P

(1 —a,p™®) 11 - a;lpfs)*l.

Now we can define functoriality. Let G, G be connected reductive groups, where G’ is
quasisplit. Suppose we have a homomorphism ¢ : *G — *G’. Let 7 = ®,m, be a cuspidal
representation of G(Ay); recall that at almost all primes, v, the representation , corresponds
to conjugacy classes C(m,). Then we can consider the image ¢({C(7,)}) of conjugacy classes
in “G’; we can ask does there exist a cuspidal automorphic representation II = ®,II, an
automorphic representation on G'(Ay) that agrees with these conjugacy classes at almost all
v? Whether or not this appears in an L2-space is very deep question. Functoriality implies
equality of L-functions, root numbers, etc. We want further to have the second projetion of
¢(z,w) is still w, so we require the map ¢ to be a so-called L-homomorphism.

Most of the time, G’ = GL,,; in this case, by strong multiplicity one, if such a representation
IT exists, then it is necessarily unique. In other cases, this representation may not be unique,
so we group them together into L-packets.

Here are some examples. Symmetric powers of GL,. Then G = GLs, and consider

¢ = Sym™ : GLy(C) — GL,4(C)

defined as follows: if P(X,Y) is a form of degree m and g € GLy(C) then P (X,Y) =
P((X,Y)g), and expressing coefficients gives you Sym™ g. In this context, the question of
functoriality asks: is there a functorial transfer Sym™ of representations?

Theorem. Sym™ is functorial for m = 2 (Gelbart-Jacquet, 1978), m = 3 (Kim-Shahidi,
2002), m =4 (Kim, 2002).

Unfortunately, at this point the image (of the local Galois representations) may not be
solvable, so it is likely to be very hard; and the depth of functoriality would have many
important consequences.

Now we also have the local Langlands correspondence by GL,, by Harris—Taylor, Henniart,
Scholze; this allows you to make local candidates, so the hard part is to prove that the
corresponding global candidate is indeed automorphic.

Over k,, the representation m, gives p, a two-dimensional representation of Wy , so we
have a homomorphism

W, 253 GL,.1(C).

and by the local Langlands correspondence, Sym™ m, corresponds to Sym™ p,. Then the
question is whether or not Sym™ 7, is automorphic; and it is known for m = 2, 3, 4.

Suppose 7 comes from a Galois group. Then 7 corresponds to p : I' = GLy(C), and we
can postcompose using Sym™ to land in GL,,;1(C). For the representation Sym™ p of I,
this does come from an automorphic representation of GL,,11(A) for all m.

s 0
06 m) of GLy(C), then

For 7, corresponding to the semisimple conjugacy class (

Sym™ (Oév BOU> = diag(ay’, ay' ' By, ..., BYY).
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By work of Luo-Rudnick-Sarnak, the Ramanujan conjecture asserts |a,| = |3,] = 1, and
they prove g, /> < |yl | Bo] < @

If § is the upper half-plane and T' is a congruence subgroup, inside L?(I'\$), for the
Laplace operator A = —y?(d?/dz* + d?/dy?), Selberg conjectured that the smallest nonzero
eigenvalue satisfies

1/4 < X(I\9);
the best known result is due to Blomer-Brumely 2012 that

M(T\$H) > 1/4 — (7/64)* = 0.238;
this already leads to many nice results. And we have
g, < Jowl, 18] <

This was all just for GLy;. Now let G be a group whose L-group is classical, so G =
SO, Sp, U, GSpin. Then “G — GLy(C), and functoriality is proven in these cases. Using
the trace formula, these have been proven by Arthur for the first two G = SO, Sp, and by
Mok and others for G = U. This has consequence for the entirety of the corresponding
L-functions: for example, if 7 is a repressentation of Sp,, then the L-functions L°(s, 7, spin)
of degree 4 and L“(s, m,std) of degree 5 are entire, and this extends to several symmetric
powers as well.

So the Langlands philosophy indicates that we should use the trace formula to further
investigate functoriality.
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