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On Notation

Much of 2.003j involves defining then manipulating points, frames of reference, and vectors. Our ability to

precisely communicate how these objects interact with each other without ambiguity rests on our choice

of notation. In this course, you will encounter subtly di↵erent notation in lectures, in handouts, and in

your book. We will try to be consistent in our notation in order to be as clear as possible.

Points

Points will appear in bold, scripted letters. This notation should be consistent in lecture, handouts, and

in the book.

Example notation of a point =) (P,O,A, o, q).

Frames of Reference

Frames of reference are very important in 2.003j. For example, a velocity is meaningless unless it can be

compared to some frame of reference. Reference frames are defined and labeled with respect to an origin

point. For example, the reference frame Ô by definition has its origin at point O. Note that we can define

two di↵erent reference frames Ô 6= Â that rotate with respect to one another but share the same origin,

O ⌘ A. Reference frames have the same style as points but with a hat on top to remind us that we are

talking about a frame of reference. The letters I, J, and K will be reserved for unit coordinate vectors so,

for clarity, should not be used to label reference frames.

Example notation of a reference frame =)
⇣
Ô, ô, Â, B̂

⌘

Unit Vectors

Unit vectors î ĵ k̂ for our reference frames will always form a right handed triad with î ⇥ ĵ = k̂ and will

appear bold and unscripted with a hat on top. To denote that a coordinate system unit vector is attached

to a specific reference frame, say frame Â, we will use a subscript on the right of the vector, or îA. We will

remove the hat from the subscript as it is clear from the context that it is a reference frame. In addition,

we will sometimes use capital letters to denote the unit coordinate vectors in the inertial ground reference

frame, îG = Î for convenience. In lecture, unit coordinate vectors will not be bold, but the meaning should

remain clear.

Example notation of a unit coordinate vector =)
⇣
î, Ĵ, ĵO, k̂A

⌘
or

⇣
î, Ĵ, ĵO, k̂A

⌘
in lecture
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Vectors

Vectors describe the position, velocity, or acceleration of points in your system and will appear bold or, in

lecture, with an arrow across the top. The position, velocity, and acceleration of a point must be defined

with respect to some frame of reference. Without the context of a reference frame, these vectors would be

ambiguous. For example, the velocity vector v of point p with respect to frame Â will be denoted as Av
p

.

Again we will drop the hat on the reference frame in the superscript as it is clear from the context that it

is a reference frame. Note that the book does not typically use this precise notation, but we will ask you

to use it for the sake of clarity and precision.

Example notation of a movement vector =)
�
Or

p

, Aa
o

, Bv
q

�
or

�
O~r

p

,A~a
o

,B ~v
q

�
in lecture

Rotations

Rotations refer to the rotation of a reference frame with respect to another reference frame, as the rotation

of a one dimensional point has no useful meaning. While a rotation is not a vector, angular velocity and

angular acceleration are. For example, the angular velocity ! of frame Â with respect to frame B̂ will be

denoted as B!A. Again we will drop the hat on the reference frames for convenience.

Example notation of a movement vector =)
�
G!A,

G⌦B,
A�B

�
or

⇣
G~!A,

G ~⌦B,
A ~�B

⌘
in lecture

Time Derivatives

Time derivatives must always be taken with respect to a reference frame. The time derivative d

dt

with

respect to frame Â will be denoted as
A
d

dt

. Note that the book uses the notations d

dt

and d

dt

()
rel

which can

be both confusing and ambiguous. The “dot” operator ṙ will denote the time derivative with respect to

the frame that r is defined in, with
A
d

dt

(Ar
p

) = Aṙ
p

.

Example notation of time derivatives =)
⇣

G
d

dt

�
Ar

p

�
, A!̇

B

⌘
or

⇣
G
d

dt

�
A~r

p

�
,A ~̇!B

⌘
in lecture

Relating Reference Frames

This notation may seem bulky and cumbersome at first but should make dealing with multiple reference

frames clearer and more precise. For example, define an inertial ground reference frame Ô at origin O and

reference frame Â with origin A with angular velocity O!A with respect to frame Ô. Then for any point

p:
Od

dt

�
Or

p

�
= Oṙ

p

= Oṙ
A

+
Od

dt

�
Ar

p

�
= Oṙ

A

+ Aṙ
p

+ O!A ⇥ Ar
p
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Derivation of Velocity and Acceleration Equations Using Intermediate Frames

Why should we use intermediate reference frames when we approach kinematic problems? Thinking

in terms of intermediate reference frames can often simplify our calculations, while attaching di↵erent

intermediate reference frames to di↵erent rigid bodies of our system can provide some physical intuition

about their relative motions.

O
ˆ

I

ˆ

J

ˆ

K

A
B

C
A0

B0

C 0

For example, a rigid body like a frisbee might fly through the air while translating and rotating in a very

complicated motion. However, given three points A, B, and C that are rigidly attached to the frisbee,

the distances AB, BC, and CA, as well as the three dimensional angles \ABC, \BCA, and \CAB all

must be constant in time, regardless of our frame of reference. This is a powerful property and using

intermediate reference frames can help us exploit this property.

In order to work with reference frames, we must mathematically define how the derivative operator applies

with respect to di↵erent frames of reference. First, we will derive the derivative of a vector with respect to

the frame in which it is defined. This result is familiar and is consistent with the traditional definition of

the derivative of a vector. Then we will derive the derivative of a vector with respect to an intermediate

reference frame, first without rotation, then finally allowing rotation of the intermediate frame.
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1. Derivative of a Vector in Its Own Reference Frame
Od
dt
(OrP )

Define fixed reference frame Ô = (O,ˆiO,ˆjO, ˆkO) and arbitrary point P . Define the vector OrP = xˆiO +

yˆjO+zˆkO, where the values (x, y, z) are the scalar projections of vector OrP on the unit coordinate vectors

of Ô. For example x = OrP ·ˆiO. Let us take the derivative of OrP with respect to the reference frame Ô

in which it is defined by using the chain rule:

Od

dt
OrP =

Od

dt
(xˆiO + yˆjO + zˆkO)

=
dx

dt
ˆ

iO +
dy

dt
ˆ

jO +
dz

dt
ˆ

kO + x
�
�
�✓

0
Od

dt
ˆ

iO + y
�

�
�✓

0
Od

dt
ˆ

jO + z
�
�

��✓
0

Od

dt
ˆ

kO

= OṙP

Here we exploit the usefulness of reference frames. The unit vectors of frame Ô by definition do not change

in time with respect to the Ô reference frame. Also note that derivatives of scalar values do not depend

on a frame of reference. This is the traditional definition of the derivative of a vector, and this is what we

mean when we use the “dot” operator.

2. Derivative of a Vector in an Intermediate Frame Without Rotation
Od
dt
(ArP )

Let us define two reference frames (a fixed frame and an intermediate frame) which only translate with re-

spect to each other. Define fixed reference frame Ô = (O,ˆiO,ˆjO, ˆkO), intermediate frame Â = (A,ˆiA,ˆjA, ˆkA),

and arbitrary point P . For pure translation, the origin of frame Â may change in time with respect to

frame Ô, but the orientation of the unit vectors (ˆiA,ˆjA, ˆkA) should not change in time with respect to

frame Ô, or mathematically,
Od
dt
ˆ

iA =
Od
dt
ˆ

jA =
Od
dt
ˆ

kA = 0. Again define the vector ArP = xˆiA + yˆjA + zˆkA.

Let us take the derivative of ArP with respect to the reference frame Ô, again using the chain rule:

Od

dt
ArP =

Od

dt
(xˆiA + yˆjA + zˆkA)

=
dx

dt
ˆ

iA +
dy

dt
ˆ

jA +
dz

dt
ˆ

kA + x
�
�
�✓

0
Od

dt
ˆ

iA + y
�

�
�✓

0
Od

dt
ˆ

jA + z
�
�
��✓

0

Od

dt
ˆ

kA

= AṙP

Interestingly, whether we take the derivative of ArP with respect to frame Ô or frame Â, our result is the

same under pure translation. Here we exploit the fact that the derivatives of the unit vectors in a purely

translating frame must be zero. Note also that if ArP is fixed in frame Â, then by definition, AṙP = 0.
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O
ˆ

I

ˆ

J

ˆ

K

A
ˆ

iA

ˆ

jA

ˆ

kA
OrA

ArP

OrP

P

3. Derivative of a Vector in an Intermediate Frame With Rotation
Od
dt
(ArP )

Rotations are more complicated and a bit less intuitive. However, we can use the same techniques to

derive a derivative. Let us define two reference frames (a fixed frame and an intermediate frame) which

can both translate and rotate with respect to each other. Define fixed reference frame Ô = (O,ˆiO,ˆjO, ˆkO),

intermediate frame Â = (A,ˆiA,ˆjA, ˆkA), and arbitrary point P . Again define the vector ArP = xˆiA + yˆjA +

zˆkA. Now, let us take the derivative of ArP with respect to the reference frame Ô, again using the chain

rule:

Od

dt
ArP =

Od

dt
(xˆiA + yˆjA + zˆkA)

=
dx

dt
ˆ

iA +
dy

dt
ˆ

jA +
dz

dt
ˆ

kA + x
Od

dt
ˆ

iA + y
Od

dt
ˆ

jA + z
Od

dt
ˆ

kA

= AṙP +

✓
x
Od

dt
ˆ

iA + y
Od

dt
ˆ

jA + z
Od

dt
ˆ

kA

◆

Unlike before, frames Ô and Â rotate with respect to one another, so the direction of the unit vectors

(ˆiA,ˆjA, ˆkA) may change in time with respect to frame Ô. Let’s look closer at the concept of rotation. We

know that frame Â rotates with respect to fixed frame Ô with some angular velocity about an axis of

rotation passing through A. Assume for the moment that ArP is fixed in frame Â. Then by definition,
AṙP = 0. The only way the direction of this vector could change with respect to frame Ô would be because

of an instantaneous rotation.
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For convenience, let us redefine coordinate system Â using a di↵erent set of unit vectors reoriented with

respect to both the axis of rotation, which in general could point in any arbitrary direction, and the vector
ArP . Define ẑA to be parallel to the axis of rotation, ⇢̂A to be the radial coordinate, and ˆ✓A to be the

tangential coordinate, such that ArP · ˆ✓A = 0. It is essential to note that we have not defined a new

reference frame, but instead re-expressed Â using di↵erent unit vectors. This is a right handed system

with ˆ✓A⇥ ẑA = ⇢̂A. After a small change in time dt, vector ArP rotates by angle d✓. The following relation

holds from the geometry by the definition of arc length:

O
ˆ

I

ˆ

J

ˆ

K

A

ẑA

⇢̂A

ˆ✓A

ArP

⇢̂A · ArP
d✓

Od(ArP ) = d✓(⇢̂A · ArP )ˆ✓A

The infinitesimal change in the unit vector ArP should be equal to the infinitesimal change in angle d✓ times

the radial component of ArP and should be pointed in the ˆ✓A direction for positive d✓. Since ˆ✓A⇥ ẑA = ⇢̂A,

we can write:

Od(ArP ) = d✓((ˆ✓A ⇥ ẑA) · ArP )ˆ✓A

Exploiting the vector identity that (a⇥ b) · c = a · (b⇥ c) we can write:

Od(ArP ) = d✓((ẑA ⇥ ArP ) · ˆ✓A)ˆ✓A

Also, defined by our choice of unit coordinates, ArP ·ˆ✓A = 0, so ((ẑA⇥ArP ) ·ˆ✓A)ˆ✓A = (ẑA⇥ArP ). Dividing

both sides by dt yields:
Od

dt
ArP =

d✓

dt
ẑA ⇥ ArP

= O!A ⇥ ArP

Here we define O!A to be equal to the instantaneous rate of change of the rotation angle in the direction

parallel to the axis of rotation d✓
dt
ẑ given by the right hand rule.
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Our only assumption in the previous analysis was for ArP to be fixed in reference frame Â, so the term
AṙP = 0. Thus, when ArP is fixed in frame Â, we can conclude that:

Od

dt
ArP =���*

0
AṙP +

✓
x
Od

dt
ˆ

iA + y
Od

dt
ˆ

jA + z
Od

dt
ˆ

kA

◆

= x
Od

dt
ˆ

iA + y
Od

dt
ˆ

jA + z
Od

dt
ˆ

kA = O!A ⇥ ArP

On the other hand, if ArP is not fixed in frame Â, AṙP 6= 0. Thus the general formula for taking the time

derivative of any vector ArP with respect to a di↵erent frame Ô is:

Od

dt
ArP = AṙP + O!A ⇥ ArP

Note that this formula is completely general and valid when taking the time derivative of any vector with

respect to any other reference frame. For example, if we take our time derivative with respect to the same

reference frame that the vector is defined in (as in Section 1), O!O = 0 by definition, and we yield the

usual result:
Od

dt
OrP = OṙP +���* 0

O!O ⇥ OrP = OṙP

4. Derivation of Velocity and Acceleration Using an Intermediate Frame

Quite often, we must find the velocity and acceleration of a vector, but be given values defined with respect

to intermediate frames. Let us define two reference frames (a fixed frame and an intermediate frame) which

can both translate and rotate with respect to each other. Define fixed reference frame Ô = (O,ˆiO,ˆjO, ˆkO),

intermediate frame Â = (A,ˆiA,ˆjA, ˆkA), and arbitrary point P . Now that we have formula for the time

derivative of a vector with respect to any frame, we can proceed directly:

OvP =
Od

dt
OrP =

Od

dt

�
OrA + ArP

�
= OṙA +

Od

dt
ArP = OṙA + AṙP + O!A ⇥ ArP

For acceleration, we just take an additional time derivative with respect to frame Ô:

OaP =
Od

dt
OvP =

Od

dt

�
OṙA + AṙP + O!A ⇥ ArP

�

= Or̈A +
Od

dt
AṙP +

✓
Od

dt
O!A

◆
⇥ ArP + O!A ⇥

✓
Od

dt
ArP

◆

= Or̈A + Ar̈P + O!A ⇥ AṙP + O!̇A ⇥ ArP + O!A ⇥
�
AṙP + O!A ⇥ ArP

�

= Or̈A + Ar̈P + 2O!A ⇥ AṙP + O!̇A ⇥ ArP + O!A ⇥
�
O!A ⇥ ArP

�
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5. Physical Meaning of Terms in the Acceleration Equation

OaP = Or̈A + Ar̈P + 2O!A ⇥ AṙP + O!̇A ⇥ ArP + O!A ⇥
�
O!A ⇥ ArP

�

Each term in this equation has a physical meaning. The first two terms are fairly intuitive: Or̈A is the

acceleration of point A with respect to frame Ô, and Ar̈P is the acceleration of point P with respect to

frame Â. The remaining three terms result from the fact that frame Â and frame Ô rotate with respect

to one another. The term 2O!A ⇥ AṙP results if point P moves relative to the rotating frame Â. For

example, you experience this acceleration when you walk around while riding on a spinning carousel. This

is called the Coriolis acceleration and, unlike the other terms, has a coe�cient of 2. The term O!̇A ⇥ ArP

results if O!A changes in time. For example, you experience this acceleration when you rotate a gyroscope,

changing the orientation of its angular velocity. This is called the Eulerian acceleration. The last term
O!A ⇥

�
O!A ⇥ ArP

�
is probably the term most familiar to you and is necessary to keep point P rotating

around the instantaneous axis of rotation. This is called the Centripetal acceleration.

6. Example: Kinematics of a Human Arm

Question:

Model your arm as two rigid bodies, your forearm of length l and your upper arm of length L, all attached

to your body. Suppose your upper arm rotates around a vertical axis with constant angular velocity ⌦

and your forearm rotates around the axis of your upper arm with constant angular velocity !. Find the

velocity and acceleration of your wrist W with respect to your body.

O
ˆ

I

ˆ

J

ˆ

K

F

B ⌘ A

W

L

l
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Solution:

First, define our frames of reference. Define reference frame B̂ = (B,ˆI, ˆJ, ˆK) attached to your body, refer-

ence frame Â = (A,ˆiA,ˆjA, ˆkA) attached to your upper arm, and frame F̂ = (F,ˆiF ,ˆjF , ˆkF ) attached to your

forearm. For convenience, let ˆiA point in the direction from your shoulder to your elbow and ˆ

iF point in

the direction from your elbow to your wrist.

Next, we write the given variables with respect to these reference frames. We have:

ArF = LˆiA
FrW = lˆiF

B!A = ⌦ ˆ

J

A!F = !ˆiA

Recall the general formula for taking the derivative with respect to frame Ô of a vector ArP defined in

frame Â. We will use this relation often in our derivation:
Od

dt
ArP = AṙP + O!A ⇥ ArP

Now, we solve for variable BvW :

BvW =
Bd

dt

�
BrW

�
=

Bd

dt

✓
⇢
⇢⇢>

0
BrA + ArF + FrW

◆
=

Bd

dt
ArF +

Bd

dt
FrW

= (���*
0

AṙF + B!A ⇥ ArF ) + (���*
0

FṙW + B!F ⇥ FrW )

= B!A ⇥ ArF + (B!A + A!F)⇥ FrW

Note that we have used the fact that B!F = B!A + A!F. To solve for the acceleration BaW , we simply

take another time derivative with respect to the body frame B̂:

BaW =
Bd

dt

�
BvW

�

=
Bd

dt

�
B!A ⇥ ArF + (B!A + A!F)⇥ FrW

�

=���*
0

B!̇A ⇥ ArF + B!A ⇥
Bd

dt
ArF + (���*

0
B!̇A +

Bd

dt
A!F)⇥ FrW + (B!A + A!F)⇥

Bd

dt
FrW

= B!A ⇥ (���*
0

AṙF + B!A ⇥ ArF ) + (���* 0
A!̇F + B!A ⇥ A!F )⇥ FrW + (B!A + A!F)⇥ (���*

0
FṙW + B!F ⇥ FrW )

= B!A ⇥ (B!A ⇥ ArF ) + (B!A ⇥ A!F )⇥ FrW + (B!A + A!F)⇥ ((B!A + A!F)⇥ FrW )

While we have actually done our calculations with respect to two intermediate frames, we can still interpret

each term as a specific type of acceleration. The first term B!A⇥(B!A⇥ArF ) is the Centripetal acceleration

of point A due to the B!A rotation. The second term (B!A ⇥ A!F ) ⇥ FrW is the change in the A!F

rotation due to the B!A rotation crossed with vector FrW . This can be interpreted as an e↵ective Eulerian

acceleration. The last term (B!A + A!F)⇥ ((B!A + A!F)⇥ FrW ) is the Centripetal acceleration of point

W due to both the B!A and A!F rotations.
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Rigid Body Dynamics

This document contains derivations of Newton’s second law and Euler’s Equations for rigid bodies derived

from Newton’s second law for point masses, as well as a definition of the moment of inertia tensor. Students

are not responsible for these derivations, but they may be useful in understanding the assumptions and

notations used.

Introduction

We accept without proof the linear momentum formulation of Newton’s second law for point masses.

Since we can directly derive the angular momentum formulation of Newton’s second law for point masses

directly from the linear formulation, both formulations for point masses yield equivalent sets of equations.

A point mass only has three degrees of freedom, so we expect that it should only have three independent

equations describing its motion. Rigid bodies on the other hand generally have six degrees of freedom:

three in translation and three in rotation. Thus we expect a rigid body to have six independent equations

describing its motion. We will see that the linear and angular momentum formulations for rigid bodies

derive from two independent assumptions, thus the formulations become independent from each other.

Outer Product, Tensors, and Matrices

For some reference frame Ô = (O, îO, ĵO, k̂O), define vectors a = ax îO + ay ĵO + az k̂O and b = bx îO +

by ĵO + bz ĵO. The inner product of these vectors is given as the scalar represented by their dot product.

Specifically:

a · b = (ax îO + ay ĵO + az k̂O) · (bx îO + by ĵO + bz ĵO) = axbx + ayby + azbz

In matrix notation, this inner product could be represented as follows:

a =

O 2

64
ax

ay

az

3

75 b =

O 2

64
bx

by

bz

3

75 a · b = aTb =
O h

ax ay az

i
O 2

64
bx

by

bz

3

75 = axbx + ayby + azbz

Where aT represents the transpose of a. Note that we use a left superscript O to denote that the elements

of this matrix correspond to magnitudes in the (̂iO, ĵO, k̂O) unit vectors. This superscript really refers to

frame Ô, not point O, but we write O because it is assumed in this context that we are talking about a

frame.

1
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The outer product of two vectors is denoted by the symbol ⌦. It is also known as the tensor product or

the Kronecker product. It is not the same as the cross product (⇥). Unlike the inner product, the outer

product produces a tensor, not a scalar or vector. The outer product is distributive but not commutative,

thus a⌦ b 6= b⌦ a. It behaves in the following way:

a⌦ b = (ax îO + ay ĵO + az k̂O)⌦ (bx îO + by ĵO + bz ĵO)

= axbx(̂iO ⌦ îO) + axby (̂iO ⌦ ĵO) + axbz (̂iO ⌦ k̂O)

+ aybx(̂jO ⌦ îO) + ayby (̂jO ⌦ ĵO) + aybz (̂jO ⌦ k̂O)

+ azbx(k̂O ⌦ îO) + azby(k̂O ⌦ ĵO) + azbz(k̂O ⌦ k̂O)

In matrix notation, this outer product would be represented as follows:

a⌦ b = abT =

O 2

64
ax

ay

az

3

75
O h

bx by bz

i
=

O 2

64
axbx axby axbz

aybx ayby aybz

azbx azby azbz

3

75

Outer products multiplied by a third vector can be written as inner products according to the identity

(a⌦ b) · c = (b · c)a. This can be readily verified from the associative property of matrix multiplication:

(a⌦ b) · c = (abT )c = a(bTc) = a(b · c) = (b · c)a X

It is important to note that writing vectors as matrices requires that you express it in terms of the unit

coordinate vectors of a single frame, and it only makes sense to multiply or add matrices when they are

expressed in terms of the same unit vectors. For example, define a frame Ô = (O, Î, Ĵ, K̂) and another

unit vector î = cos ✓Î + sin ✓Ĵ. We could easily define a vector F = �mg Ĵ + T î in terms of any mix of

unit coordinates we want. However, to write this vector as a single column vector in matrix notation, we

would have to convert to a single basis of unit vectors:

F =

O 2

64
T cos ✓

T sin ✓ �mg

0

3

75 = T cos ✓ Î+ (T sin ✓ �mg) Ĵ

Lastly, the identity matrix 13 is a very special 3x3 matrix. It has the property that for any vector a,

13a = a. In addition, its projection onto any set of basis vectors will look the same. If 13 is to be written

in terms of the unit vectors of frame Ô, or indeed any frame Â, it would have the following tensor and

matrix representations:

13 = Î⌦ Î+ Ĵ⌦ Ĵ+ K̂⌦ K̂ =

O 2

64
1 0 0

0 1 0

0 0 1

3

75 = îA ⌦ îA + ĵA ⌦ ĵA + k̂A ⌦ k̂A =

A 2

64
1 0 0

0 1 0

0 0 1

3

75

2
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Linear Momentum for Rigid Bodies: Extension of Newton’s Second Law

Define a fixed inertial reference frame Ô = (O, Î, Ĵ, K̂). Let us also define a discrete set of N point masses

as a rigid body M with M =
PN

i=1 mi. First, let us derive an expression relating the linear momentum

of the rigid body to the forces acting on it. For each point mass in the body, the linear formulation of

Newton’s second law applies:

X
F i =

Od

dt

�
Opi

�
for i = 1 ! N

Where
P

F i is the sum of all the forces acting on point mass mi. Let us sum together all of these equations

for all N point masses:

NX

i=1

X
F i =

NX

i=1

Od

dt

�
Opi

�
(1)

Let us first examine the left side of equation (1). Every force acting on each point mass must either be an

internal force from another point mass in the extended body, or an external force. Define F ij to be the

internal force that point mass mj exerts on point mass mi, and
P

FM to be the sum of external forces on

the collection of particles M . Then:

NX

i=1

X
F i =

⇣X
FM

⌘

external

+

 
NX

i=1

NX

j=1

F ij

!

internal

Here we must use an independent assertion to proceed. We will exploit Newton’s third law such that the

reaction forces between interacting point masses in the body must be equal and opposite, or F ij ⌘ �F ji.

Thus we have that:

 
NX

i=1

NX

j=1

F ij

!

internal

= 0

Let us assume the rigid body’s mass is constant in time. Because the derivative operator is distributive,

the right side of equation (1) becomes:

NX

i=1

Od

dt

�
Opi

�
=

Od

dt

 
NX

i=1

mi
Ovi

!
= M

Od

dt

"
Od

dt

 
1

M

NX

i=1

mi
Ori

!#
= MOaC

Here we have used the definition of the center of mass C of a discrete system or, in the limiting case, a

continuum with a density as a function of position ⇢(OrV ) over volume V :
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OrC =
1

M

NX

i=1

mi
Ori or OrC =

1

M

ZZZ

V

⇢(OrV )
OrV dV with M =

ZZZ

V

⇢(OrV ) dV

Plugging back into equation (1) yields the linear momentum formulation of Newton’s second law for a rigid

body relating the sum of the external forces acting on the body to the acceleration of the body’s center of

mass.

X
FM = MOaC

Angular Momentum for Rigid Bodies: Euler’s Equations

Now let us derive an expression relating the angular momentum of the rigid body to the torques acting on

it. Define a reference frame B̂ = (B, îB, ĵB, k̂B) in which the rigid body is stationary, i.e. a frame moving

with the body. For each point mass in the body, the angular momentum formulation of Newton’s second

law applies:

X
⌧B
i =

Od

dt

�
OhB

i

�
+ OvB ⇥ Opi for i = 1 ! N

Where
P

⌧B
i is the sum of the torques about point B acting on point mass mi.

Let us sum these equations over all N point masses:

NX

i=1

⇣
Bri ⇥

X
F i

⌘
=

NX

i=1

Od

dt

�
OhB

i

�
+

NX

i=1

OvB ⇥ Opi (2)

Let us first examine the left side of equation (2). Again, every force acting on each point mass will either

be an internal force from another point mass in the extended body or an external force acting on the body.

Define
P

⌧B
M to be the sum of external torques on the collection of particles M about point B. Then:

NX

i=1

⇣
Bri ⇥

X
F i

⌘
=
⇣X

⌧B
M

⌘

external

+

"
NX

i=1

 
Bri ⇥

NX

j=1

Fmij

!#

internal

Here again we must use an independent assertion to proceed. We could just define a rigid body such that

the sum of the torques on the body due to internal forces sum to zero. Alternatively, we can model the

point masses in the rigid body such that they cannot move relative to each other, thus the sum of the
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internal forces can do no work on the rigid body. Define Wij to be the work that point mass mj exerts on

point mass mi. Then:

NX

i=1

NX

j=1

Wij = 0 =
NX

i=1

NX

j=1

Z
F ij · Odri =

Z NX

i=1

NX

j=1

F ij · Ovi dt

This must hold true for any time interval, thus, for any frame B̂ in which every point mass mi is stationary:

0 =
NX

i=1

NX

j=1

F ij · Ovi =
NX

i=1

NX

j=1

F ij ·
Od

dt
(OrB + Bri) =

NX

i=1

NX

j=1

F ij · (OvB +⇢
⇢⇢>

0
Bvi +

O!B ⇥ Bri)

= OvB ·
⇢
⇢
⇢
⇢
⇢
⇢⇢>

0

NX

i=1

NX

j=1

F ij +
NX

i=1

NX

j=1

F ij · (O!B ⇥ Bri) =
O!B ·

NX

i=1

 
Bri ⇥

NX

j=1

F ij

!

Since this equation must hold true for any angular velocity O!B of the rigid body:

"
NX

i=1

 
Bri ⇥

NX

j=1

F ij

!#

internal

= 0

Let us assume the rigid body’s mass is constant in time. Because the derivative operator is distributive,

the second term on the right side of equation (2) becomes:

OvB ⇥
NX

i=1

Opi =
OvB ⇥

Od

dt

NX

i=1

mi
Ori = M OvB ⇥ OvC

For the first term on the right side of equation (2), let us analyze the angular momentum OhB
i . Recall the

vector identity a⇥ (b⇥ c) = (a · c)b� (a · b)c. Applying this identity:

NX

i=1

OhB
i =

NX

i=1

mi
Bri ⇥ Ovi =

NX

i=1

mi
Bri ⇥ (OvB +⇢

⇢⇢>
0

Bvi +
O!B ⇥ Bri)

= M BrC ⇥ OvB +
NX

i=1

mi

⇥
(Bri · Bri)

O!B � (Bri · O!B)
Bri

⇤

We will utilize two more vector/matrix identities: c = 13c, where 13 is the 3x3 identity matrix, and

(a · b)c = (c⌦ a)b, where ⌦ is the outer product. Applying these rules, we get:
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NX

i=1

OhB
i = M BrC ⇥ OvB +

NX

i=1

mi

⇥
(Bri · Bri)13 � (Bri ⌦ Bri)

⇤
O!B = M BrC ⇥ OvB + I B

M
O!B

This is how we define the moment of inertia I B
M of a rigid body mass M about pivot point B. This is a

3x3 tensor. To get a better sense of this tensor, let us express it in terms of its components in the B̂ frame,

with Bri = xi îB + yi ĵB + zi k̂B. Thus:

I B
M =

NX

i=1

mi

⇥
(Bri · Bri)13 � (Bri ⌦ Bri)

⇤

=
NX

i=1

mi

0

BB@(x2
i + y2i + z2i )

B 2

64
1 0 0

0 1 0

0 0 1

3

75�

B 2

64
x2
i xiyi xizi

yixi y2i yizi

zixi ziyi z2i

3

75

1

CCA

=
NX

i=1

mi

B 2

64
y2i + z2i �xiyi �xizi

�yixi z2i + x2
i �yizi

�zixi �ziyi x2
i + y2i

3

75

In the continuous case:

I B
M =

ZZZ

V

⇢(BrdV )
⇥
(BrdV · BrdV )13 � (BrdV ⌦ BrdV )

⇤
dV

=

ZZZ

V

⇢(x, y, z)

B 2

64
y2 + z2 �xy �xz

�yx z2 + x2 �yz

�zx �zy x2 + y2

3

75 dx dy dz

The diagonal terms of this matrix are called the moments of inertia while the o↵-diagonal terms are called

the products of inertia. Here, these matrices have been expressed in terms of the unit coordinates of the

B̂ frame, but we could have expressed in terms of the unit coordinates of any frame. Plugging back into

equation (2) yields Euler’s Equations for a rigid body. For a rigid body we assume that the moment of

inertia tensor is constant in time with respect to frame B̂ in which the body is stationary.

X
⌧B
M =

Od

dt

�
M BrC ⇥ OvB + I B

M
O!B

�
+M OvB ⇥ OvC

= M


Od

dt
(BrC ⇥ OvB) +

OvB ⇥ OvC

�
+ I B

M
O!̇B +

0

@
⇢
⇢
⇢⇢>

0
Bd

dt
I B
M + O!B ⇥ I B

M

1

A O!B

X
⌧B
M = I B

M
O!̇B + O!B ⇥

�
I B
M

O!B

�
+M


Od

dt
(BrC ⇥ OvB) +

OvB ⇥ OvC

�
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Note that if we choose B ⌘ C or B fixed in frame Ô, then the last term goes to zero, and we get a simplified

version of Euler’s Equations:

X
⌧B
M = I B

M
O!̇B + O!B ⇥

�
I B
M

O!B

�

Parallel Axis Theorem

From the definition of the general moment of inertia tensor I B
M , we can readily break up the vector Bri up

into two components such that Bri = BrC + Cri where C is the center of mass of the rigid body.

I B
M =

NX

i=1

mi

⇥
((BrC + Cri) · (BrC + Cri))13 � ((BrC + Cri)⌦ (BrC + Cri))

⇤

Exploiting the distributive property:

IB
M =

NX

i=1

mi

⇥
(BrC · BrC + 2BrC · Cri + Cri · Cri))13 � (BrC ⌦ BrC + BrC ⌦ Cri +

Cri ⌦ BrC + Cri ⌦ Cri))
⇤

=
NX

i=1

mi

⇥
(BrC · BrC)13 � (BrC ⌦ BrC)

⇤
+

NX

i=1

mi

⇥
(Cri · Cri)13 � (Cri ⌦ Cri)

⇤

+ 2BrC ·
NX

i=1

mi
Cri +

BrC ⌦
NX

i=1

mi
Cri +

NX

i=1

mi
Cri ⌦ BrC

But
PN

i=1 mi
Cri = MCrC = 0, thus, if BrC = a îB + b ĵB + c k̂B, we have:

I B
M = I C

M +M
⇥
(BrC · BrC)13 � (BrC ⌦ BrC)

⇤

I B
M = I C

M +M

B 2

64
b2 + c2 �ab �ac

�ba c2 + a2 �bc

�ca �cb a2 + b2

3

75

Symmetry and Products of Inertia

If a rigid body has a plane of symmetry about the C ĵB k̂B plane, then ⇢(x, y, z) = ⇢(�x, y, z). This tells us

something about the products of inertia in the inertia tensor I C
M . For example, let us examine the îB ⌦ ĵB
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term in this tensor:

I C
M · (̂iB ⌦ ĵB) = I Cxy =

1ZZZ

�1

⇢(x, y, z)(�xy)dx dy dz

=

1ZZ

�1

2

4
1Z

0

⇢(x, y, z)(�xy)dx+

0Z

�1

⇢(x, y, z)(�xy)dx

3

5 dy dz

=

1ZZ

�1

2

4
1Z

0

⇢(x, y, z)(�xy)dx+

0Z

1

⇢(�x, y, z)(xy)(�dx)

3

5 dy dz

=

1ZZ

�1

2

4
1Z

0

⇢(x, y, z)(�xy)dx�
1Z

0

⇢(�x, y, z)(�xy)dx

3

5 dy dz

= 0

Conceptually, every point on the positive îB side of the rigid body has an equivalent density on the negative

îB side, so the integral with respect to the x variable must sum to zero. Thus all the products of inertia

containing an x variable, i.e. I Cxy, I
C
yx, I

C
xz, and I Czx must all be zero. Also notice that if the any two of the

C îB ĵB, C ĵB k̂B, and C k̂B îB planes are planes of symmetry, all products of inertia will be zero.

Principal Axes

We have seen that the inertia tensor I C
M about a rigid body’s center of mass C can be described as a matrix

in terms of the unit basis coordinates of some reference frame. Linear algebra tells us that because the

inertia tensor is both real and symmetric, there must exist some choice of basis coordinates such that I C
M

is diagonal. We call this set of basis coordinates the body’s principal axes. The key property of principal

axes is that multiplying I C
M by a principal direction results in a vector pointing in the same direction:

I C
M · îC = Ixx îC

Here, we call the principal direction îC an eigenvector of the matrix I C
M , and call the principal moment

of inertia Ixx the corresponding eigenvalue. We can exploit this property to find the principal directions

of a body. Suppose we calculate the tensor components of I C
M in terms of a frame whose unit vectors are

not the principal directions. If we can find a vector îC such that I C
M · îC = I îC for some constant I, we

will have found a principal direction. Typically we would parameterize îC in terms of angles of rotation,

perform the I C
M · î multiplication, set the ĵC and k̂C terms to zero, and solve for the angles of rotation in

order to find the principal directions.

Note that if a rigid body has certain symmetries, finding the principal axes may be quite easy to find, but

may not be unique. For example, if a rigid body is rotationally symmetric about a single axis, any basis
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set of unit vectors including the axial direction will be a set of principal axes. This fact can be proved from

the symmetry arguments above, noting that all products of inertia in terms of such a basis must cancel

to zero. Also, for any rigid body with a plane of symmetry, the normal direction to the plane will be a

principal direction. Typically, we will not need to solve for the principal directions as we can just look up

the moment of inertia for common objects, which will be given in terms of their principal directions.

If we write Euler’s Equations in terms of a frame Ĉ = (C, îC , ĵC , k̂C) associated with the principal axes

of the body such that I C
M = Ixx îC ⌦ îC + Iyy ĵC ⌦ ĵC + Izz k̂C ⌦ k̂C , O!̇C = !x îC + !y ĵC + !z k̂C , and

⌧C
M = ⌧x îC + ⌧y ĵC + ⌧z k̂C , Euler’s Equations can be written as the following three scalar equations:

⌧x = Ixx!x + !y!z(Iyy � Izz)

⌧y = Iyy!y + !z!x(Izz � Ixx)

⌧y = Izz!z + !x!y(Ixx � Iyy)

Example

motor

m,L

C

�
Î

Ĵ

A motor rotates a shaft of negligible mass at a constant angular velocity ✓̇ Î. The shaft is held on two

bearings. Halfway between these bearings, a bar of uniform density with mass m and length L is rigidly

fixed to the shaft at an angle � from the axis of the shaft. Determine the torque the bearings must exert

on the shaft-bar system to keep the system rotating at constant velocity.

Solution

Define ground reference frame Ô = (O ⌘ C, Î, Ĵ, K̂), intermediate frame Â = (A ⌘ C, îA ⌘ Î, ĵA, k̂A)

rotating and aligned with the massless shaft such that O!A = ✓̇ Î and Ĵ ⇥ ĵA = sin ✓ Î, and intermediate

frame Ĉ = (C, îC , ĵC , k̂C ⌘ k̂A) rotating and aligned with the bar such that O!C = ✓̇ Î and îA⇥îC = sin� k̂A.

Let us write Euler’s Equations for the sum of the torques about the center of mass, point C:

X
⌧C
m = I C

m���* 0
O!̇C + O!C ⇥

�
I C
m

O!C

�
= O!C ⇥

�
I C
m

O!C

�

Note that we can use the simplified Euler Equations because we are summing torques about the center of

mass C, which also happens to be fixed in ground frame Ô. The left side of the equation is what we are

looking for, while the only thing on the right side we don’t know is the moment of inertia tensor I C
m.
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I C
m =

ZZZ

V

⇢(CrdV )
⇥
(CrdV · CrdV )13 � (CrdV ⌦ CrdV )

⇤
dV

Let us express this tensor first in terms of frame Ĉ. The mass per unit length of the rod is a constant m
L
.

We must integrate along the length of the rod, which we can parameterize as CrdV = x îC :

I C
m =

L/2Z

�L/2

m

L

h
(x2 îC · îC)13 � (x2 îC ⌦ îC)

i
dx =

m

L

L/2Z

�L/2

x2dx
⇣
13 � îC ⌦ îC

⌘
=

mL2

12

⇣
13 � îC ⌦ îC

⌘

We can write this in terms of both tensor and matrix notation:

I C
m =

mL2

12

h
(̂iC ⌦ îC + ĵC ⌦ ĵC + k̂C ⌦ k̂C)� îC ⌦ îC

i
=

mL2

12

⇣
ĵC ⌦ ĵC + k̂C ⌦ k̂C

⌘

=
mL2

12

0

BB@

C 2

64
1 0 0

0 1 0

0 0 1

3

75�

C 2

64
1 0 0

0 0 0

0 0 0

3

75

1

CCA =
mL2

12

C 2

64
0 0 0

0 1 0

0 0 1

3

75

Note that this tensor is diagonal, which means we happened to project the moment of inertia tensor onto

a set of principal axes. Note that one rarely needs to calculate moments of inertia explicitly as the inertia

tensor along the principal axes for most common shapes can be readily looked up in tables. Plugging into

Euler’s Equations, we find:

X
⌧C
m = ✓̇ Î⇥


mL2

12

⇣
ĵC ⌦ ĵC + k̂C ⌦ k̂C

⌘
· ✓̇ Î

�
=

mL2

12
✓̇2 Î⇥ [(̂jC · Î)̂jC +⇠⇠⇠⇠⇠: 0

(k̂C · Î)k̂C ]

=
mL2

12
✓̇2(� sin� Î⇥ ĵC) = �mL2

12
✓̇2 sin� cos� k̂A

If we wanted to use matrix notation, we would need to either convert I C
m to the ground reference frame

coordinates or convert O!C to the unit coordinates of frame Ĉ. Both methods yield the same answer as

the tensor representation, though writing the inertia tensor in the ground coordinates is quite tedious.
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Converting I C
m to the ground frame coordinates:

I C
m =

mL2

12

⇣
13 � îC ⌦ îC

⌘
=

mL2

12

⇣
13 � (cos� îA + sin� ĵA)⌦ (cos� îA + sin� ĵA)

⌘

=
mL2

12

⇣
13 � [cos� Î+ sin�(cos ✓Ĵ+ sin ✓K̂)]⌦ [cos� Î+ sin�(cos ✓Ĵ+ sin ✓K̂)]

⌘

=
mL2

12

0

BB@

O 2

64
1 0 0

0 1 0

0 0 1

3

75�

O 2

64
cos2 � sin� cos� cos ✓ sin� cos� sin ✓

sin� cos� cos ✓ sin2 � cos2 ✓ sin2 � sin ✓ cos ✓

sin� cos� sin ✓ sin2 � sin ✓ cos ✓ sin2 � sin2 ✓

3

75

1

CCA

=
mL2

12

0

BB@

O 2

64
1� cos2 � � sin� cos� cos ✓ � sin� cos� sin ✓

� sin� cos� cos ✓ 1� sin2 � cos2 ✓ � sin2 � sin ✓ cos ✓

� sin� cos� sin ✓ � sin2 � sin ✓ cos ✓ 1� sin2 � sin2 ✓

3

75

1

CCA

X
⌧C
m = O!C ⇥

�
I C
m

O!C

�
= ✓̇

O 2

64
1

0

0

3

75⇥ mL2

12
✓̇

O 2

64
1� cos2 �

� sin� cos� cos ✓

� sin� cos� sin ✓

3

75

=
mL2

12
✓̇2 sin� cos�(sin ✓Ĵ� cos ✓K̂) = �mL2

12
✓̇2 sin� cos� k̂A

In general, we will almost always prefer to keep the inertia tensor in terms of the principal directions, and

just convert the angular velocity to match. Converting O!C to the unit coordinates of frame Ĉ:

O!C = ✓̇ Î = ✓̇ îA = ✓̇(cos� îC � sin� ĵC) = ✓̇

C 2

64
cos�

� sin�

0

3

75

X
⌧C
m = O!C ⇥

�
I C
m

O!C

�
= ✓̇

C 2

64
cos�

� sin�

0

3

75⇥

0

BB@
mL2

12

O 2

64
0 0 0

0 1 0

0 0 1

3

75 ✓̇

C 2

64
cos�

� sin�

0

3

75

1

CCA

=
mL2

12
✓̇2

C 2

64
cos�

� sin�

0

3

75⇥

C 2

64
0

� sin�

0

3

75 = �mL2

12
✓̇2 sin� cos� k̂A

Note that when � = 0 or � = ⇡
2
, no torque is required. However, for all other values of �, the torque on

the bearings will be non-zero, constantly and periodically changing direction with time which can cause

significant rattling, fatigue, and damage.
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