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2.001 Quiz #1 Review

1 Connections

Unknown reaction forces provided for di↵erent types of connections:

Table 1-1 Hibbeler (8th Edition)

2 Internal Forces & Sign Conventions

+

In order to analyze the internal forces in an object, we can imagine cutting it in two and analyzing

what forces must exist in order to keep each piece in equilibrium. Just as with connections between

objects, a certain number of internal forces are required to constrain the object to remain in

equilibrium. In three dimensions, three reaction forces and three reaction moments are required to

model the possible internal interactions. In two dimensions, two reaction forces (axial N and shear

V) and one reaction moment M are necessary. Our sign conventions for this course are shown

above. The most important convention here is that positive internal axial force describes a beam

in tension.
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3 Equilibrium

Newton’s second law yields multiple equations that describe equilibrium. For a body that can move

in three dimensions, Newton’s second law yields six equations (three for force balance and three for

moment balance). For a body that can move only in two dimensions, Newton’s second law yields

three equations (two for force balance and one for moment balance).
h X

F = 0 ,
X

(M)B = 0
i

=)
h X

Fx =
X

Fy =
X

(Mz)B = 0
i

Here, moments are taken about some arbitrary point B. Reactions between two objects in static

equilibrium must be equal and opposite according to Newton’s third law. Note that if only two

forces and no moments act on an object, the forces must be equal in magnitude, opposite in

direction, and collinear. We call such objects two-force-members.

4 Indeterminate Structures & Degrees of Freedom

Statically determinate structures are structures that are minimally supported. By that we mean

that if you remove any piece or constraint from the structure, it can no longer support equilibrium

and can collapse. We can solve for the internal and reaction forces of determinate structures in a

straight-forward manner using equations of equilibrium.

Alternatively, structures that are over-supported and have redundant supports or constraints are

called statically indeterminate. These systems share the property that there exists a constraint or

element of the structure that can be removed, and the system will still be able to exist in equilibrium

and not collapse. The system is over constrained, so equilibrium will not give enough equations to

solve for the unknowns. Constitutive equations will provide the additional equations we require by

relating deformations in the system through the structure’s geometry. We relate the deformations

of the system to the forces acting on the system through constitutive relations.

Degrees of freedom (DoF) are an independent set of movements a structure can make that describe

all possible deformed configurations. If you fix all degrees of freedom, the system will not be able

to move (it is a complete set), while if you fix any strict subset of them, the structure will be able

to move (they are independent). The number of equilibrium equations you need in order to solve

a statically indeterminate system is equal to the number of degrees of freedom for the structure.
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5 Stress, Strain, & Constitutive Relations

Stress is a tensor that describes the state of loading in an object. The tensor properties of stress

will be discussed later in the course. For now, we will deal primarily with average normal stress �

in an object produced by a force P distributed over an area A with units of [N/m2]. More generally,

a force is the integral of stress acting on an area.

� =
P

A
P =

Z

A

� dA

The average strain " in an object is the proportional elongation � of the object with respect to the

original length L of the object, with units [m/m] (unit-less). More generally, the elongation is the

integral of strain over the length of the object.

" =
�

L
� =

Z

L

" dL

For materials deforming in the elastic regime, the stress � and strain " of a material can be modeled

as being directly proportional to one another. We can relate these two quantities through the use

of Hooke’s Law:

� = E"

where E is a scalar property of the material that is deforming called the Young’s modulus. In

general, any of the quantities in the above equations (�, ", E, F , A, �, L) could be functions of

space or time, but typically one or more of them will be constant in some direction. For axial

loading, strain " is assumed to be only a function of a single axial direction (call it x), and we can

write an object’s elongation as an integral over the single variable x. If the beam is not a composite

structure and the young’s modulus is only a function x, we have a further simplification. If P ,

E, and A are all constant in x, then the integral reduces to the familiar elongation equation for a

uniform two-force-member.

"(x)
=) � =

LZ

0

P (x)R

A(x)

E(x, y, z)dA
dx

E(x)
=) � =

LZ

0

P (x)

E(x)A(x)
dx

P,E,A const in x
=) � =

PL

EA
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6 Compatibility B0

L(ux, uy)

L
0

A
✓

B
ux

uy

Compatibility refers to the geometric relationship between the deformations and displacements of

beams and objects. This can get tricky when beams deflect at angles other than along their axis.

For example, consider the bar AB of length L
0

above, with point A fixed and point B deflecting

by (ux, uy). The exact stretched length L of the deformed member is given by geometry:

L(ux, uy) =
q
L2

0

+ 2L
0

(ux cos ✓ + uy sin ✓) + u2x + u2y

This equation is messy to solve and superposition does not apply, so we typically assume small

deflections so that a first order approximation of the elongations will su�ce. The first order

approximation of the Taylor series for the above function yields:

L(ux, uy) ⇡ L
0

+ ux cos ✓ + uy sin ✓

and we can see that to first order, we can treat the deflections in x and y as a linear system. In

practice, we can use the result above to find elongations by drawing the beam displaced in each

of its component directions independently, and then projecting the displaced point onto the line

of the original beam by dropping a perpendicular. The distance from the original point to the

intersection will represent the approximate elongation of the displaced point.

L
0

�x = ux cos ✓

✓

ux
✓

+
L
0

�y = uy sin ✓

✓

uy

✓

=)

L
0

+ �x + �y

L
0

✓

ux

uy
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7 Displacement Method

We can solve statically indeterminate structures defined by axial loading in two ways. So far, we

have only discussed the displacement method where we displace the degrees of freedom of the system

and analyze how the system reacts. This method is good for systems that are very indeterminate

(systems that are highly over-constrained), but can be applied to any statically indeterminate

system. The method has nine steps. First we analyze the system for its degrees of freedom (1),

then we write down all the equations we need in order to solve the problem (2)-(4), and lastly, we

go through the algebra to solve for our unknown variables (5)-(9).

(1) Identify degrees of freedom # DoF = n ux, uy, �, . . . () ⇠
1

, ⇠
2

, . . . , ⇠n

(2) Conjugate equilibrium equations # Equations = n
P

F ,
P

(M)B

for each DoF # Unknowns = m N
1

, N
2

, . . . , Nm

(3) Constitutive relations # Equations = m � = E", � =
R
"dL, N =

R
�dA

# Unknowns = m �
1

, �
2

, . . . , �m

(4) Compatibility # Equations = m � = ux cos ✓ + uy sin ✓

# Unknowns = n ux, uy, �, . . . () ⇠
1

, ⇠
2

, . . . , ⇠n

(5) Backsubstitute Combine 2m equations into n equations for DoF

(6) Solve for DoF ux, uy, �, . . . () ⇠
1

, ⇠
2

, . . . , ⇠n

(7) Solve for beam elongations �
1

, �
2

, . . . , �m

(8) Solve for internal forces N
1

, N
2

, . . . , Nm

(9) Solve for reactions at supports RA
x , RB

y , MC
z , . . .

This table demonstrates that if our structure is statically determinate (minimally constrained),

the number of degrees of freedom and the number of unknown internal forces in our equilibrium

equations will be equal (n = m). However, if m > n, our system is statically indeterminate

(over-constrained), while if n > m, our system is under-constrained and can move (i.e. 2.003).
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8 Examples

(1) (2)

x

P

g

ES , r0, ⇢

ER, r(x)

D E

F

CB

E, A

A

L

L

P

✓

Problem (1)

Consider a steel pillar with a rubber covering attached rigidly to the ground. The cylindri-

cal steel pillar has constant radius r
0

and density ⇢. The rubber covering has variable radius

r(x) =
p

(x+ r
0

)r
0

, with x = 0 at the top of the pillar and x = H at the bottom of the pillar.

Assume the weight of the rubber is negligible compared to the weight of the steel. Let steel and

rubber have Young’s moduli ES and ER respectively. Given that a force P is applied to the top of

the pillar, determine the pillar’s elongation from its unstressed length H. Note that gravity acts.

Solution: This composite structure is statically determinate, elongating under axial load. Force

balance in the x direction of a chopped o↵ section of the pillar of length x is given by:
X

Fx = 0 = P �N � ⇢g⇡r2
0

x N(x) = P � ⇢g⇡r2
0

x

Taking our general equation relating uniaxial force to uniaxial elongation yields:

� =

HZ

0

N(x)R

A

EdA
dx =

HZ

0

N(x)

ESAS + ERAR
dx =

HZ

0

P � ⇢g⇡r2
0

x

ES⇡r2
0

+ ER(⇡(
p
(x+ r

0

)r
0

)2 � ⇡r2
0

)
dx

=

HZ

0

P � ⇢g⇡r2
0

x

ES⇡r2
0

+ ER⇡r0x
dx =

HZ

0

P

ES⇡r2
0

+ ER⇡r0x
dx�

HZ

0

⇢gr
0

x

ESr0 + ERx
dx

=


P

ER⇡r0
ln
��ES⇡r

2

0

+ ER⇡r0x
��� ⇢gr

0

✓
x

ER
� ESr0

E2

R

ln |ESr0 + ERx|
◆�H

0

=

✓
P

ER⇡r0
+

⇢gr2
0

ER

ES

ER

◆
ln

����1 +
ER

ES

H

r
0

�����
⇢gr

0

H

ER
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Problem (2)

Consider the truss above. Rod AE is rigid, while all other beams are deformable with Young’s

modulus E and cross-sectional area A. A force P is applied to the right at point A. Determine the

rotation of the rigid beam due to this loading. What are the internal forces acting at point F?

Solution: This structure is statically indeterminate as a deformable bar could be removed and the

structure could remain in equilibrium. Let BD be bar 1, BC be bar 2, DE be bar 3, BE be bar

4, and CD be bar 5. Using the displacement method:

(1) DoF: {uDx , uBx , uBy ,�E} (�E being the rotation of rigid bar about E)

(2) Equilibrium:
X

FD
x = 0 = N

3

+N
5

cos ✓
X

FB
x = 0 = N

2

+N
4

cos ✓
X

FB
y = 0 = �N

1

�N
4

sin ✓
X

(Mz)E = 0 = (L)N
2

� (2L)P + (L cos ✓)N
5

(3) C. R.:

�
1

=
N

1

L

EA , �
2

=
N

2

L

EA tan ✓
, �

3

=
N

3

L

EA tan ✓
, �

4

=
N

4

L

EA sin ✓
, �

5

=
N

5

L

EA sin ✓

(4) Compatibility:

�
1

= uBy , �
2

= �EL�uBx , �
3

= �uDx , �
4

= uBy sin ✓�uBx cos ✓, �
5

= �uDx cos ✓+�EL cos ✓

We have 14 equations in 14 unknowns. Back-solving for �E yields:

�E =
2P

EA

(cos2 ✓ + 1)(cos3 ✓ + sin3 ✓ + 1)

cos2 ✓ sin ✓(2 cos3 ✓ + sin3 ✓ + 2)

Internal forces at point F are given by equilibrium on section ACF :
X

Fx = 0 = P + V �N
2

�N
5

cos ✓
X

Fy = 0 = �N �N
5

sin ✓
X

(Mz)C = 0 = (L/2)V +M� (L)P

Yields: N = �N
5

sin ✓ V = N
2

+N
5

cos ✓ � P M = (L/2)(3P �N
2

�N
5

cos ✓)

Where N
2

and N
5

are found from the above system.
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Algebra is messy. Luckily, we can write this system of linear equations as a matrix and solve using

MATLAB. Here, we have used the letters S and C to represent sin ✓ and cos ✓ respectively.

syms S C P L E A;

A = [

%N1, N2, N3, N4, N5, d1, d2, d3, d4, d5, uDx, uBx, uBy, phi

0, 0, 1, 0, C, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 1, 0, C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

1, 0, 0, S, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 1, 0, 0, C, 0, 0, 0, 0, 0, 0, 0, 0, 0;

-L, 0, 0, 0, 0, E*A, 0, 0, 0, 0, 0, 0, 0, 0;

0, -L*C, 0, 0, 0, 0, E*A*S, 0, 0, 0, 0, 0, 0, 0;

0, 0, -L*C, 0, 0, 0, 0, E*A*S, 0, 0, 0, 0, 0, 0;

0, 0, 0, -L, 0, 0, 0, 0, E*A*S, 0, 0, 0, 0, 0;

0, 0, 0, 0, -L, 0, 0, 0, 0, E*A*S, 0, 0, 0, 0;

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0;

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -L;

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, C, -S, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, C, 0, 0, -L*C];

b = [0,0,0,2*P,0,0,0,0,0,0,0,0,0,0]’;

x = simplify(A\b);

% N1 (2*S*conj(P)*(C^3 + 1))/(C*(2*C^3 + S^3 + 2))

% N2 (2*conj(P)*(C^3 + 1))/(2*C^3 + S^3 + 2)

% N3 -(2*conj(P)*(C^3 + S^3 + 1))/(2*C^3 + S^3 + 2)

% N4 -(2*conj(P)*(C^3 + 1))/(C*(2*C^3 + S^3 + 2))

% N5 (2*conj(P)*(C^3 + S^3 + 1))/(C*(2*C^3 + S^3 + 2))

% d1 (2*L*S*conj(P)*(C^3 + 1))/(A*C*E*(2*C^3 + S^3 + 2))

% d2 (2*C*L*conj(P)*(C^3 + 1))/(A*E*S*(2*C^3 + S^3 + 2))

% d3 -(2*C*L*conj(P)*(C^3 + S^3 + 1))/(A*E*S*(2*C^3 + S^3 + 2))

% d4 -(2*L*conj(P)*(C^3 + 1))/(A*C*E*S*(2*C^3 + S^3 + 2))

% d5 (2*L*conj(P)*(C^3 + S^3 + 1))/(A*C*E*S*(2*C^3 + S^3 + 2))

% uDx (2*C*L*conj(P)*(C^3 + S^3 + 1))/(A*E*S*(2*C^3 + S^3 + 2))

% uBx (2*L*conj(P)*(C^3 + 1)*(S^3 + 1))/(A*C^2*E*S*(2*C^3 + S^3 + 2))

% uBy (2*L*S*conj(P)*(C^3 + 1))/(A*C*E*(2*C^3 + S^3 + 2))

% phi (2*conj(P)*(C^3 + 1)*(C^3 + S^3 + 1))/(A*C^2*E*S*(2*C^3 + S^3 + 2))
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2.001 Quiz #2 Review

1 3D Constitutive Relations and Thermal Expansion

Stress and strain are tensors. As such, they have multiple components that can be represented in

a matrix. In this class, these matrices will always be symmetric.

¯̄
� =

2

664

�

xx

�

xy

�

xz

�

yx

�

yy

�

yz

�

zx

�

zy

�

zz

3

775 ¯̄
" =

2

664

"

xx

"

xy

"

xz

"

yx

"

yy

"

yz

"

zx

"

zy

"

zz

3

775

The subscript notation for stress �

ij

refers to a stress in the j direction applied to a surface with

surface normal in the i direction. We often use ⌧

ij

instead of �
ij

for shear stresses. This is purely

notational. Alternatively, each component of the strain tensor "

ij

refers to the derivative of the

i component of displacement with respect to the j direction du

i

dj

. The components of the strain

tensor are related to the components of the stress tensor according to the following three dimensional

constitutive equations:

du

i

di

= "

ii

=
1

E

[�
ii

� ⌫(�
jj

+ �

kk

)] + ↵�T

�

ij

=
du

i

dj

+
du

j

di

= 2"
ij

=
⌧

ij

G

G =
E

2(1 + ⌫)

G is the shear modulus for the material and ↵ is the material’s coe�cient of thermal expansion.

Note that ↵�T results directly in a change in strain and will not a↵ect stress unless the strain of

the object is constrained in some way.

2 Pressure Vessels

Pressure vessels are not a new topic, but a convenient application for equilibrium and the above

three dimensional constitutive relations. For thin-walled vessels, we make the approximation that

the wall thickness is very small compared to the radius of the vessel, i.e. R/t � 1.

1
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This approximation justifies the assumption that the radial stress is negligible compared to the

transverse stresses (�
rr

⇡ 0). The hardest part about pressure vessels is drawing correct free body

diagrams and approximating areas. Here are results for the state of stress in the cylindrical walls

of a cylindrical thin-walled pressure vessel, both open and closed:

(�
rr

,�

xx

,�

✓✓

)
open

= (0, 0, 1)
PR

t

(�
rr

,�

xx

,�

✓✓

)
closed

= (0, 1, 2)
PR

2t

Additionally, for a cylindrical pressure vessel, the axial strains are related to the macroscopic

changes in length assuming uniform deformation:

"

xx

=
�

L

L

"

✓✓

=
2⇡(R+ �

R

)� 2⇡R

2⇡R
=

�

R

R

"

rr

=
�

t

t

3 Torsion

Torsion is quite analogous to axial loading with torque T taking the place of axial forces N , shear

stress ⌧
x✓

taking the place of axial stress �
xx

, the shear modulus G taking the place of the Young’s

modulus E, shear strain "

x✓

taking the place of axial strain "

xx

, the polar moment of inertia I
P

taking

the place of an e↵ective area, and deflection angle � taking the place of axial displacement u
x

.

Axial Load Torsion

N =
R

A

�

xx

dA T =
R

A

r�

x✓

dA

�

xx

= E"

xx

⌧

x✓

= 2G"

x✓

"

xx

= du

x

dx

"

x✓

= r

2
d�

dx

u

x

=
R

L

N
(EA)

eff

dx � =
R

L

T

(GI

P

)
eff

dx

(EA)
eff

=
R

A

EdA (GI

P

)
eff

=
R

A

Gr

2
dA

Here are some derived values of polar moment of inertia I

P

for di↵erent shaped cross-sections of

constant shear modulus G.

(I
P

)
circle

=
⇡

2
R

4 (I
P

)
annulus

=
⇡

2
(R4 � r

4) (I
P

)
thin�shell

= 2⇡R3
t

2
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Note that just like for axial loading, we have a sign convention for talking about internal loads.

For axial loading, positive internal axial force was normal to a cut surface, while positive beam

deformation was elongation. For torsion, positive internal torque is given by the right hand rule

for the direction of twist about the surface normal of a cut.

Exactly analogous to axial loading, torsional systems can be statically determinate or indeterminate.

The displacement method works exactly the same in this context: identifying angular degrees

of freedom, performing moment equilibrium, applying constitutive equations, the relating them

through compatibility.

4 Examples

4.1 Pressure Vessel Example

2R

2R

L

t

P,�T P,�T

F

A thin-walled cylindrical pressure vessel has material properties E, ⌫, and ↵ with unpressurized

length L, radius R, and thickness t at room temperature. It is placed unpressurized into a rigid

pipe, also with radius R.

(a) The pressure vessel is pressurized to gauge pressure P > 0 and heated by an amount �T > 0.

Determine the state of stress in the cylindrical walls of the pressure vessel.
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Solution: �

rr

is negligible because of our thin-walled assumption. �

xx

is the same as the axial

stress in a closed cylinder (the vessel is not constrained in x). �

✓✓

can be found directly from the

constitutive relations noting that "
✓✓

= 0.

"

✓✓

= 0 =
1

E

[�
✓✓

� ⌫(�
xx

+ �

rr

)] + ↵�T

�

rr

= 0 �

xx

=
PR

2t
�

✓✓

=
⌫PR

2t
� ↵E�T

(b) A force F is then applied to the top of the pressure vessel to press the vessel down to its original

length L. Assume the gauge pressure remains the same as in part (b). Determine the new state

of stress in the cylindrical walls of the pressure vessel.

Solution: �

rr

is still negligible but both the circumferential and axial strains are now both con-

strained to zero strain. Thus:

"

xx

= 0 =
1

E

[�
xx

� ⌫(�
✓✓

+ �

rr

)] + ↵�T "

✓✓

= 0 =
1

E

[�
✓✓

� ⌫(�
xx

+ �

rr

)] + ↵�T

�

rr

= 0 �

xx

= �

✓✓

= �↵E�T

1� ⌫

(c) How much force F had to be applied?

Solution: We can now solve for the force using equilibrium now that the internal axial stress is

known. Taking equilibrium in the vertical direction for the top half of the pressure vessel yields:

X
F

y

= 0 = P (⇡R2)� F � �

xx

(2⇡Rt)

F = P⇡R

2 +
↵E�T

1� ⌫

(2⇡Rt)
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4.2 Torsion Example

x

⌧(x) = ⌧0(x/L)

2r 2R

G(x) = 1
2G0

�
1 + x

L

�

L L

G0

⇢(x) = Re

�(x�L)/L

A B C

Two circularly symmetric beams, each of length L are joined by a thin rigid plate and rigidly

attached on each end to stationary walls. Let the coordinate x measure the horizontal distance

from the left wall. The left beam has a uniform cross sectional area in the shape of an annulus

with outer radius R and inner radius r whose shear modulus varies along its length according to

G(x) = 1
2G0(1 + x/L). The right bar has uniform shear modulus G0, and circular cross-section

whose radius varies along its length according to ⇢(x) = Re

�(x�L)/L. A distributed shear stress is

applied to the left bar along its cylindrical outer surface with magnitude ⌧(x) = ⌧0x/L. Determine

the reaction torque applied to the right wall.

Solution: This is a statically indeterminate system (it is supported by both walls) so we will not

be able to solve for internal or reaction torques directly from equilibrium. We will need to write

down constitutive relations and compatibility to solve the problem. Let’s first apply equilibrium

on a middle chunk of the beam by summing moments about the axial direction:

x

⌧(x)

T1(x) T2

X
(M

x

)
A

= 0 = T2 � T1(x)�
LZ

x

r

⇣
⌧0

x

L

⌘
(2⇡R)dx

T1(x) = T2 �
⇡R

2

L

⌧0(L
2 � x

2)
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Here, T1(x) is the varying internal torque in the left beam while T2 is the constant internal torque

in the right beam. T2 is also equal to the reaction torque the problem demands. This is one

equation in two unknowns and the system is statically indeterminate. Constitutive relations relate

the internal torques to the world of angles:

��

AB

=

LZ

0

T1(x)

(GI

P

)(1)
eff

dx (GI

P

)(1)
eff

=

Z

A

G(x, r)r2dA =


1

2
G0

⇣
1 +

x

L

⌘�
⇡

2
(R4 � r

4)

��

AB

=
4

G0⇡(R4 � r

4)

LZ

0

T1(x)

1 + x/L

dx

��

BC

=

2LZ

L

T2

(GI

P

)(2)
eff

dx (GI

P

)(2)
eff

=

Z

A

G(x, r)r2dA = G0
⇡

2
[⇢(x)]4 = G0

⇡

2
R

4
e

�4(x�L)/L

��

BC

=
2T2

G0⇡R
4

2LZ

L

e

4(x�L)/L
dx ��

BC

=
T2L

2G0⇡R
4

�
e

4 � 1
�

Lastly, compatibility requires that the angle of deflection from A to B plus the angle of deflection

from B to C is zero (both walls are fixed):

��

AB

+��

BC

= 0

We have four equations in four unknowns (T2, T1(x),��

AB

,��

BC

). Solving for T2:

4

G0⇡(R4 � r

4)

LZ

0

LT2 � ⇡R

2
⌧0(L2 � x

2)

L+ x

dx+
T2L

2G0⇡R
4

�
e

4 � 1
�
= 0

T2
L

G0⇡

2

4 4

R

4 � r

4

LZ

0

1

L+ x

dx+
1

2R4

�
e

4 � 1
�
3

5+
4R2

⌧0

G0(R4 � r

4)

LZ

0

�(L+ x)(L� x)

L+ x

dx = 0

T2
L

G0⇡

(
8


ln |L+ x|

�
L

0

+ (1� r

4
/R

4)
�
e

4 � 1
�
)

+
8R2

⌧0

G0


�1

2
(L� x)2

�
L

0

= 0

T2 =


4⇡

8 ln |2|+ (1� r

4
/R

4)(e4 � 1)

�
R

2
L⌧0
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Addendum: Sketch the internal torque T (x) and the twist angle �(x) as a functions of axial

distance x.

Solution: There are two ways of thinking about sketching these diagrams. The first is quantitative

and involves solving all the equations for the internal torques and angles as functions of x. We will

do that to get the exact values of each point on the curve. The second way is a good way to absorb

the problem before you delve into the math by qualitatively constructing the shape of each curve

just from logic, geometry, and intuition. Let’s think about the sketches qualitatively first and see

if our quantitative equations match up with our intuition.

Let’s start with internal torque. The external distributed shear stress is applying a torque to our

system in the global �x direction. We would then expect the reaction torque at each wall to be

in the opposite global direction (the x direction) to counteract this applied load. Since the normal

to the cut face on the left points in the �x direction, we expect the reaction torque at A to be

negative, and because the normal to the cut face on the right points in the +x direction, we expect

the reaction torque at C to be positive. Additionally the internal torque from B to C should be

constant (no additional load is applied), which the internal torque should increase from A to B.

Also, because internal torque is an integral of applied shear and the applied shear is linear, we can

expect the internal torque from A to B to be quadratic.

Now for the twist angle. Note that twist angle refers to a global twist of the beam, and we are

taking positive � to be about the +x direction. Because each end is fixed, the twist angles at A

and C are clearly zero. The external distributed shear stress is applying a torque to our system

in the global �x direction. It would make sense that the bar would then have a twist angle in

the same direction with its maximum magnitude at B. Thus we have qualitative estimates for the

twist angle at A, B, and C.

The actual shapes of the curves in sections AB and BC are a little more di�cult to intuit, but

we would certainly expect the curve from A to B to be monotonically decreasing and the curve

7



from B to C to be monotonically increasing. For the right side of the bar, the smaller radius cross

sections will be able to resist rotation less then the larger radius cross sections, thus we expect it

to change its twist angle faster as the radius decreases.

On the left side, because both the shear modulus and the applied shear stress change with distance,

it is not exactly intuitive as to which one wins out. It turns out that since the internal torque

increases quadratically and the shear modulus increases linearly, the internal torque wins out and

the beam will change its angle faster closer to B.

Now let’s see if the equations agree with our qualitative arguments. Solving the above equations

for the internal torque as a function of x yields:

T (x) =

8
<

:
T2 � ⇡R

2

L

⌧0(L2 � x

2) for 0  x  L

T2 for L < x  2L

This agrees with our estimate because T2 < ⇡R

2
L⌧0, so T (x) is negative at A. Solving the above

equations for twist angle as a function of x yields:

�(x) =

8
<

:

4
G0⇡(R4�r

4)

⇥
T2 ln |1 + x/L|� 1

2⇡R
2
⌧0(L� x)2

⇤
for 0  x  L

�(L) + T2L

2G0⇡R
4

�
e

4(x�L)/L � 1
�

for L < x  2L

This agrees with our estimate because the negative quadratic term �x

2 wins out over the logarith-

mic term ln |1 + x/L|.
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2.001 Final Review

1 Beam Bending

Beam bending is analogous to axial loading and torsion except that the loading is not axially

symmetric. The first relationships we derived were derivative relationships between the loading per

unit length q in the downward direction, the internal shear V, and the internal moment M:

�q(x) =
dV
dx

V(x) = dM
dx

If we know the loading on the beam, we can directly draw shear and moment diagrams from either

equilibrium or inspection, noting boundary conditions and discontinuities.

Next, we developed a link between the internal moment and the axial stresses in the material. We

argued that the axial stress distribution would be linear and zero at the location of the neutral axis

given no axial loading on the beam.

M(x) = �
Z

A(x)

�

xx

(x, y, z)ydA

The ‘y’ here is the distance from the neutral axis y = w � w which is the location such that the

first moment of the material sti↵ness is zero:
Z

A(x)

E(x, y, z)(w � w)dA = 0

We related the beam strain to a radius of curvature ⇢(x) which varies only in the axial direction,

and then related the radius of curvature to the slope and displacement under small deformations

of the beam.

"

xx

(x) = �y

1

⇢(x)
= �y

d✓

dx

= �y

d

2

v

dx

2

In combination with Hooke’s law, we arrived at the following second order di↵erential constitutive

equation in terms of an e↵ective bending sti↵ness for the cross section:

d

2

v

dx

2

=
M(x)

(EI)
eff

(x)
(EI)

eff

=

Z

A(x)

E(x, y, z)y2dA

In order to solve this second order di↵erential equation, two boundary conditions are needed.

1
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Lastly, just as the internal axial stress varies over the beam cross section, we also derived a rela-

tionship for the distribution of the transverse shear stress in a bending beam with uniform Young’s

modulus:

�

xy

(x, y) =
V (x)Q(x, y)

I(x)t(x, y)
where Q =

Z

A

0
(x,y)

ydA

0

Here, A0 is the subset of the cross sectional area further away from the neutral axis than y, and t

is the width of the cross section at height y. Note that the transverse shear stress goes to zero at

the top and bottom of a bending beam and is highest at the neutral axis.

2 Mohr’s Circle

�

n

⌧

✓

�

xx

�

xy

�

xy

�

yy

⌧

�

(�
xx

,��

xy

)

(�
yy

,�

xy

)

�

1

�

2

|⌧ |
max

R

�

2✓

Mohr’s circle provides a way to visualize the state of stress in a material. Because stress is a tensor

quantity, it can manifest in di↵erent forms depending on the way we cut the material to analyze

the internal stress. Our convention is to consider positive shear ⌧ to run clockwise around a body.

Given this convention, the equations describing stress transformations in two dimensions given an

initial state of stress (�
xx

,�

yy

,�

xy

) and a rotation angle ✓ are:

�

n

(✓)� �

xx

+ �

yy

2
=

�

xx

� �

yy

2
cos(2✓) + �

xy

sin(2✓)

⌧(✓) =
�

xx

� �

yy

2
sin(2✓)� �

xy

cos(2✓)

Squaring both sides and adding them together yields the equation for Mohr’s Circle:

(�
n

� �)2 + ⌧

2 = R

2 where � =
�

xx

+ �

yy

2
and R

2 =

✓
�

xx

� �

yy

2

◆
2

+ �

2

xy

Note that the principal stresses are always �
1,2

= �±R and the magnitude of the maximum shear

stress is always |⌧ |
max

= R.
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3 General Review

3.1 Static Equilibrium

X
F = 0 ,

X
(M)

A

= 0

3.2 3D Constitutive Relations and Thermal Expansion

"

ii

=
du

i

di

=
1

E

[�
ii

� ⌫(�
jj

+ �

kk

)] + ↵�T

2"
ij

=
du

i

dj

+
du

j

di

= �

ij

=
�

ij

G

G =
E

2(1 + ⌫)

3.3 Pressure Vessels

State of stress for cylindrical pressure vessels given R � t:

(�
rr

,�

xx

,�

✓✓

)
open

= (0, 0, 1)
PR

t

(�
rr

,�

xx

,�

✓✓

)
closed

= (0, 1, 2)
PR

2t

Strain deformation relations for cylindrical pressure vessels:

"

xx

=
�

L

L

"

✓✓

=
2⇡(R+ �

R

)� 2⇡R

2⇡R
=

�

R

R

"

rr

=
�

t

t

3.4 Beam Deformation and Combined Loadings

In this class, we have analyzed the deformation of beams under axial load, torsion, and bending. Our

equations have only dealt with small elastic deformations. Because of this, if a beam undergoes

multiple types of deformations, we can treat it as a linear superposition of the di↵erent modes

of deformation. The analogous equations for axial loading, torsion, and bending are shown on

the following page. The first four equations listed for each mode of deformation are the general

equations derived from geometry, equilibrium, and Hooke’s law. The second set of equations are

useful derived equations from the first four. Note that we have assumed that �
yy

= �

zz

= �T = 0

to simplify our constitutive equations.
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4 Example: Beam Deformation

L

P

A

B

E

,

⌫

A

P

R

2R
✓

x

y

A uniform beam with Young’s modulus E, poisson ratio ⌫, and geometry shown above is rigidly

attached to a wall and deforms under an applied load P .

(a) Determine the displacement of point A assuming small deflections.

(b) Determine the state of stress at point B located at the top of the beam. Find the principal

stresses �
1,2

and maximum magnitude shear stress |⌧ |
max

.

5 Example: Statically Indeterminate Pressure Vessel

E

1

, ⌫

1

↵

1

E

2

, ⌫

2

,↵

2

L

1

L

2

2R 2R

L

1

+ L

2

P

1

,�T P

2

,�T

A

B

Two thin-walled cylindrical pressure vessels each with wall thickness t have unpressurized geometry

shown on the left. They are enclosed in a rigid frictionless cylindrical chamber as shown on right,

heated through a change in temperature �T , and pressurized to di↵erent pressures.

(a) Determine the displacement of point A assuming �

rr

⇡ 0.

(b) Determine the state of stress at point B. Find the principal stresses �
1,2

and maximum mag-

nitude shear stress |⌧ |
max

.
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Beam Deformation Example Solution:

For small deformations, this loading can be thought of as a superposition of multiple deformation

modes. The load is axially compressing the bar and bending it down. Also, because point A is

o↵set from the centerline, the load also twists the beam about its axis and bends the beam out

of the page. These four loadings are shown below. Each deformation mode can contribute to the

deflection of point A and the state of stress at point B. Let us analyze these for each mode.

x

y

x

y

x

y

x

y

P cos ✓ P sin ✓ PR sin ✓ PR cos ✓

(1) (2) (3) (4)

+ + +

(1) Axial loading with axial load �P cos ✓ applied to the end in the x direction.

(2) Bending with point load �P sin ✓ applied to the end in the y direction.

(3) Torsion with torque load PR sin ✓ applied to the end in the x direction.

(4) Bending with concentrated moment �PR cos ✓ applied to the end in the y direction.

(1) Axial Load

Contribution to deflection of A:

N (x) = �P cos ✓ (EA)
eff

= ER

2(⇡ � 1) u

A(1)

x

(L) =
NL

(EA)
eff

= �L

P

ER

2

cos ✓

⇡ � 1

Contribution to stress at B:

�

B(1)

xx

(0, R) =
NE

(EA)
eff

= � P

R

2

cos ✓

⇡ � 1

(2) Vertical Bending

Contribution to deflection of A:

M(x) = P sin ✓(x�L) (EI)
eff

=
1

12
ER

4(3⇡�1)
d

2

dx

2

v

A(2) =
M

(EI)
eff

= �P (x� L)

ER

4

12 sin ✓

(3⇡ � 1)

Given: v(0) = ✓(0) = 0 v

A(2)(x) =
P (x4 � 3Lx2)

ER

4

2 sin ✓

(3⇡ � 1)
u

A(2)

y

(L) = �L

PL

2

ER

4

4 sin ✓

(3⇡ � 1)

Contribution to stress at B:

�

B(2)

xx

(0, R) = � MEy

(EI)
eff

=
PL

R

3

12 sin ✓

3⇡ � 1
�

B(2)

xy

(0, R) =
V(x)

I(x)t(y)

⇢
⇢
⇢
⇢

⇢⇢>
0Z

A

0
(x,y)

ydA

0 = 0
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(3) Torsion

Contribution to deflection of A:

T (x) = PR sin ✓ (GI

P

)
eff

=


E

2(1 + ⌫)

�
1

6
R

4(3⇡�1) �

A(3)(L) =
T L

(GI

P

)
eff

=
PL

ER

3

12 sin ✓(1 + ⌫)

3⇡ � 1

u

A(3)

z

⇡ 0 u

A(3)

y

⇡ �R�

A(3)(L) = �L

P

ER

2

12 sin ✓(1 + ⌫)

3⇡ � 1

Contribution to stress at B:

�

B(3)

xz

(0, R) =
T Gr

(GI

P

)
eff

=
P

R

2

6 sin ✓

3⇡ � 1

(4) Sideways Bending

Contribution to deflection of A:

M(x) = PR cos ✓ (EI)
eff

=
1

12
ER

4(3⇡ � 1)
d

2

dx

2

v

A(4) =
M

(EI)
eff

=
P

ER

3

12 cos ✓

(3⇡ � 1)

Given: v(0) = ✓(0) = 0 v

A(4)(x) =
P

ER

3

6 cos ✓

(3⇡ � 1)
x

2

u

A(4)

z

(L) = L

PL

ER

3

6 cos ✓

(3⇡ � 1)

Contribution to stress at B:

�

B(2)

xx

(0, 0) = � ME���
0

y

(EI)
eff

= 0 �

B(2)

xy

(0, R) = ���*
0

V(x)
I(x)t(y)

Z

A

0
(x,y)

ydA

0 = 0

Thus, deflection of point A due to loading is:

u

A =
PL

ER

2


� cos ✓

⇡ � 1
,� 4 sin ✓

3⇡ � 1

✓
L

2

R

2

+ 3(1 + ⌫)

◆
,

L

R

6 cos ✓

3⇡ � 1

�

And state of stress of material at point B is:

¯̄
�

B

=
P

R

2

2

664

⇣
L

R

12 sin ✓

3⇡�1

� cos ✓

⇡�1

⌘
0 6 sin ✓

3⇡�1

0 0 0
6 sin ✓

3⇡�1

0 0

3

775

Thus, since � = 1

2

P

R

2

⇣
L

R

12 sin ✓

3⇡�1

� cos ✓

⇡�1

⌘
and R = P

R

2

r⇣
L

R

12 sin ✓

3⇡�1

� cos ✓

⇡�1

⌘
2

+
⇣
6 sin ✓

3⇡�1

⌘
2

,

�

1,2

= � ±R and |⌧ |
max

= R
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Statically Indeterminate Pressure Vessel Example Solution:

This problem is statically indeterminate, so we will have to solve a system of equations to find the

displacement of point A. Note that there is only a single degree of freedom of the system: uA
x

, the

x displacement of point A. First, let us perform equilibrium. Making a vertical cut on either side

of point A, we can write down an equation of equilibrium relating �

1

xx

to �

2

xx

:

X
F

x

= 0 = P

1

(⇡R2)� P

2

)⇡R2) + �

2

xx

(2⇡Rt)� �

1

xx

(2⇡Rt) =) R

2t
(P

1

� P

2

) = (�1

xx

� �

2

xx

)

This is one equation in two unknowns, �1

xx

and �

2

xx

, thus the system is statically indeterminate.

Constitutive relations relating the state of stress in the walls to the axial strain are:

"

1

xx

=
1

E

1

h
�

1

xx

� ⌫

1

(�1

✓✓

+⇢⇢>
0

�

1

rr

)
i
+ ↵

1

�T

"

2

xx

=
1

E

2

h
�

2

xx

� ⌫

2

(�2

✓✓

+⇢⇢>
0

�

2

rr

)
i
+ ↵

2

�T

This provides two equations but introduces an additional four new unknowns ("1
xx

, "2
xx

, �1

✓✓

, �2

✓✓

).

However, we know that the circumferential strains ("
✓✓

= �

R

/R = 0) of the vessels are constrained.

Thus we have two more equations describing this constraint:

"

1

✓✓

= 0 =
1

E

1

h
�

1

✓✓

� ⌫

1

(�1

xx

+⇢⇢>
0

�

1

rr

)
i
+ ↵

1

�T

"

2

✓✓

= 0 =
1

E

2

h
�

2

✓✓

� ⌫

2

(�2

xx

+⇢⇢>
0

�

2

rr

)
i
+ ↵

2

�T

Lastly, we must relate the geometry of the deformations to the degrees of freedom of the system.

�

1

L

= L

1

"

1

xx

= u

A

x

�

2

L

= L

2

"

2

xx

= �u

A

x

A symbolic algebraic solver can be used to solve this system of seven equations in seven unknowns

yielding any of (�1

xx

, �2

xx

, �1

✓✓

, �2

✓✓

, "1
xx

, "2
xx

, uA
x

).

The state of stress at point B is given by (�
xx

, �
yy

, �
xy

) = (�2

xx

, �2

✓✓

, 0). Thus, since � = 1

2

(�2

xx

+�

2

✓✓

)

and R = 1

2

(�2

xx

� �

2

✓✓

),

�

1,2

= � ±R and |⌧ |
max

= R
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