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Problems:

P1: (Toric code) (a) The Hilbert space decomposes into joint eigenspaces of S = 〈Ap, Bs〉 labeled by the

eigenvalues of 2ℓ2 − 2 independent generators. Hence, each eigenspace is 4-dimensional. Each of these

eigenspaces is also an eigenspace of the Hamiltonian H with energy −2ℓ2 +2N where N is the number

of pairs of site or plaquette operators with −1 eigenvalues. The lowest energy state is achieved when

N is zero, so the joint +1 eigenspace, i.e. the code space, corresponds to the ground state manifold.

(b) A pair of charges is the boundary of a connected chain of Z errors and a pair of vortices is the

boundary of a connected chain of X errors. If one half of such a pair tunnels around a nontrivial cycle

before fusing with the other half of the pair, an element of N(S)−S is applied since the resulting chain

has no boundary and cannot be deformed to a point. This element is a nontrivial rotation of the code

space, so it is a nontrivial rotation in the ground state manifold. A charge tranversing the nontrivial

cycle around the hole corresponds to Z̄1 while a flux traversing the nontrivial cycle through the hole

corresponds to X̄1, and Z̄1X̄1Z̄1X̄1 = −1.

(c) The perturbation V =
∑

eCe is a sum of single qubit operators. Suppose that P projects from

the unperturbed states to the perturbed states at the kth order of perturbation theory, so the kth

order shifts of the ground states are the eigenvalues of the matrix HP evalulated in the ground state

manifold∗. The first order shift has P = P0 and is simply 〈ψ|V |ψ〉 for an unperturbed ground state |ψ〉.
The correction is zero since ground states can only be connected by operators of weight ℓ and higher.

This is the main point. At order k ≥ 2, each shift is a sum of terms proportional to 〈ψi|(SV )kS|ψj〉
where each S is replaced by either −P0 or Q0 = I − P0 and {|ψi〉} is a basis for the ground state.

Again, the shifts are zero and the splitting is zero as well since V k can be written as a sum of Pauli

operators of weight k or less. The degeneracy is not reduced until the ℓth order, when these terms

begin to have nonzero contributions to the energy.

(d) The circuit shown below measures the site and plaquette operators using only nearest-neighbor

interactions. The CNOT gates can be staggered so that the measurements can be done in parallel.

There is an excellent paper by Dennis, Kitaev, Landahl, and Preskill entitled “Topological quantum

memory” that explains why these circuits are fault-tolerant if ℓ is large enough, so that a quantum

state can be stored by repeatedly measuring the syndrome and keeping track of the most likely chains

of errors.

∗Messiah, Quantum Mechanics, Ch. 16
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P2: (Accuracy threshold for quantum error-correction) (a) Contrary to the notation in the problem

set, I will put bars over elements of the normalizer so they are not confused with single qubit Pauli

operators Xi or Zi acting on the ith qubit. Modulo S = 〈g1, g2, g3, g4〉, X̄5 = X1X2X3 and Z̄5 =

Z1Z4Z7 and these are the lowest weight representatives. Therefore, all single qubit errors can be

corrected. The code is a CSS code, so it corrects X and Z errors independently, therefore all two qubit

ZX-mixed errors can be corrected as well. The stabilizer does not have any weight two operators.

Since we may neglect errors in the gauge group G = 〈Z̄1, . . . , Z̄4, X̄1, . . . , X̄4, S〉, all two qubit errors

in G may be “corrected” because they only act on HS . Using the notation Z(i,j) for a Z in row

i and column j, where the indices are modulo 3, the complete set of correctable two qubit errors

is {Z(i,j)Z(i,j+1), X(i,j)X(i+1,j)}. Any two qubit errors that are not in the gauge group and are not

of ZX-mixed type will not be properly corrected, by inspection. For example, Z1Z4 has the same

syndrome as Z7.

(b) The stabilizer operators are products of operators in the gauge group. Consider the Z-type

stabilizer operators since the procedure for the X-type stabilizer operators is analogous (but rotated

by 90 degrees). We can find the following set of two qubit operators in the gauge group: Z1Z2 = Z̄1,

Z2Z3 = Z̄2, Z1Z3 = Z̄1Z̄2, Z4Z5 = Z̄3, Z5Z6 = Z̄4, Z4Z6 = Z̄3Z̄4, Z7Z8 = g3Z̄1Z̄3, Z8Z9 = g4Z̄2Z̄4,

and Z7Z9 = g3g4Z̄1Z̄2Z̄3Z̄4. The product of Z1Z2, Z4Z5, and Z7Z8 is g3 and the product of Z2Z3,

Z5Z6, and Z8Z9 is g4. Therefore, we can correct X errors with the following procedure.

(i) Measure the 6 operators Z1Z2, Z4Z5, Z7Z8, Z2Z3, Z5Z6, Z8Z9 to obtain respective outcomes m1,

m2, . . ., m6 in {0, 1} where 0 corresponds to +1 and 1 corresponds to −1.

(ii) Compute the syndromes s3 = m1⊕m2⊕m3 and s4 = m4 ⊕m5⊕m6 corresponding to generators

g3 and g4.

(iii) There are four possible outcomes for the pair (s3, s4): (0, 0) is the no error case, (1, 0) indicates

an X error in the first column, (0, 1) indicates an X in the third column, and (1, 1) indicates an

X error in the second column.
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(iv) If the syndrome is nontrivial, correct the top qubit of the indicated column j. If some other qubit

in the ith row of column j was actually in error, the resulting operator X(1,j)X(i,j) is in the gauge

group and only acts nontrivally on HS .

(c) The measurement circuits are given in the following figures.

When the input is in the code space, a necessary condition for fault-tolerance is that a single fault in

the circuit does not lead to uncorrectable errors propagating to the data qubits. In these circuits, the

worst cases occur when a CNOT gate fails, but all of these cases leave residual single qubit errors or

residual two qubit errors in the gauge group or of ZX-mixed type. The ZX-mixed error occurs when

the first CNOT of figure (a) fails and leaves an XZ on control and target respectively.

The measurement circuits from the figure can be composed in series to measure the syndrome of a

Bacon-Shor code. We have already shown that single faults in these circuits cannot produce uncor-

rectable errors in the data. However, if two or more circuits are composed in series, a fault in an earlier

circuit may produce an error E that modifies the measurement outcomes of the later circuits. If the

measurement outcomes give a syndrome that decodes to the error E′ 6= E, the product EE′ of the

actual error and the correction may not be correctable.

Consider the circuit to measure Z1Z2 and Z2Z3 on qubits 1, 2, and 3, shown below. A single fault at

the marked location leads us to infer that the 3rd column is in error when actually the 2nd column

contains the error. By inspection, this is the only case where our interpretation of the measurement

outcomes is incorrect. Therefore, adding an additional measurement of Z1Z3 allows us to detect this

case and interpret the measurement outcomes correctly.

The other circuits can be constructed analogously.

(d) The circuit to measure the gauge operators along a single row or column contains 12 possible fault

locations, so a single EC contains 6 × 12 = 72 locations. A simple lower bound on the threshold for

FTEC (for stochastic noise) is γth ≥
(

2×72
2

)−1
or 9.7 × 10−5. In fact, 1.26 × 10−4 is a lower bound for

the threshold for computation with this code.
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P3: (Codeword stabilized codes) (a) First, any stabilizer state can be mapped by a Pauli operator to

a new stabilizer state whose phases are all +1. Let S = 〈gi〉 stabilize a state |S〉. There is a unitary

U that maps the state |00 . . . 0〉 to |S〉. Since these states are both binary stabilizer states, U may be

chosen to be in the Clifford group. Therefore, ḡi := UXiU
† is a Pauli operator that anticommutes

with gi and commutes with gj for all j 6= i (since the all zero state is stabilized by all products of Z).

Hence, we may apply some product P of the ḡi to |S〉 so that the resulting state P |S〉 is stabilized by

S′ := 〈g′i〉 where g′i = ±gi and all g′i have +1 phase.

Second, there is a map φ from the Pauli group Gn to binary strings of length 2n given by φ(I) =

[0|0], φ(X) = [1|0], φ(Z) = [0|1], and φ(Y ) = [1|1] and φ(P1 ⊗ P2) = (φ(P1), φ(P2)). For example

φ(XZY I) = [1010|0110]. The map is a homomorphism, meaning φ(P1P2) = φ(P1)+φ(P2), i.e. matrix

multiplication becomes addition modulo 2. The phases of Pauli elements are dropped, so we can write

φ(XaZb) = [a|b] where “|” just separates the two halves of the binary string. XaZb and Xa
′

Zb
′

commute iff (a|b) ⊙ (a′|b′) := ab′ + ba′ = 0. The single qubit Clifford gates are generated by

H =
1√
2

[

1 1

1 −1

]

and S = diag(1, i). (1)

Acting on coordinate i ∈ {1, 2, . . . , n} of [a|b], Hadamard swaps ai and bi and Phase maps bi to ai +bi.

These observations reduce the problem to a potentially simpler one. Show that any n × 2n matrix

[A|B] whose rows pairwise satisfy (a|b)⊙ (a′|b′) = 0 can be mapped to [I|Λ], where Λ is an adjacency

matrix, by the following operations:

(i) replacing row j by the sum of row j and another row j′

(ii) swapping column i and column i+ n

(iii) adding column i to column i+ n

Therefore, we can use Gauss-Jordan steps (i) to put A into the form

(

I A′

0 A′′

)

, (2)

then we use Gauss-Jordan steps (i) to put B into the form

(

B′ 0

B′′ I

)

. (3)

Now we use Hadamard gates (ii) to swap the right blocks of A and B to get

(

I 0 B′ A′

0 I B′′ A′′

)

, (4)

and, finally, we use Phase gates (iii) to clear the diagonal of B. The final form of B is an adjacency

matrix because the rows of [A|B] originally satisfied (a|b) ⊙ (a′|b′) = 0, pairwise.

(b) The map classicalG(E) takes any single qubit Pauli error to 10000c, 11100c, or 10100c, where the

subscript indicates that all cyclic shifts are included. All strings are nonzero, so the only condition

to satisfy is that C detects these errors as a classical code, but this is obvious. By linearity, the code
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detects any single qubit error. On the other hand, the string 11010c is produced by ZIXIIc, so the

code is distance 2.

(c) Write the [[7, 1, 3]] code as a CWS code with stabilizer 〈S[[7,1,3]], X̄ = XXXXXXX〉 and word

operators {I, Z̄ = ZZZZZZZ}. Apply the procedure in part (a) to the stabilizer. The word operators

transform by conjugation UW |S〉 = UWU †U |S〉. The CWS standard form of the [[7, 1, 3]] Steane code

is

The circled vertices indicate where the Z̄ word operator acts, so the classical code is C = {0000000, 1110000}.
By inspection now, it is easy to see that the code has distance 3 since we cannot flip the bits at only

the degree two vertices using one or two Pauli errors.

P4: (Measurement-based computing with cluster states) (a) By the convention in class, the input

qubits are the left-most qubits that are measured in the X basis and the output qubits are the unmea-

sured qubits. The qubits measured in the Z basis are removed.

(b,c) This is a simple case where Pauli measurement bases do not depend on prior outcomes, so the

circuit is a stabilizer circuit. Partition the cluster into regions and consider them separately. Suppose

the top qubit begins in the state |ψ1〉 and the bottom qubit in state |ψ2〉. The first two columns

teleport the inputs to positions (1, 3) and (4, 3) respectively.
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The third column applies a controlled-Z gate between |ψ1〉 and |ψ2〉. Finally, the last row applies a

Hadamard to the bottom qubit. The circuit is a controlled-Z gate followed by H2. The initial cluster

state preparation puts the inputs in |+〉, so the final state is a Bell pair (|00〉 + |11〉)/
√

2.
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