MIT EECS 6.443J / Physics 8.371J / 18.409 / MAS.865: Quantum Information Science




MIT 6.443J / 8.371J / 18.409 / MAS.865
Quantum Information Science

Course Homepage

Isaac Chuang & Peter Shor

Spring, 2008

Contents

  • Course Description
  • General Course Information
  • Syllabus
  • Handouts
  • Useful Resources


    Course Description

    Advanced graduate course on quantum computation and quantum information. Prior knowledge of quantum mechanics is required. The first semester of this two-course sequence (2.111/18.435J) was taught by Seth Lloyd in the Fall of 2005. This semester, we will cover models of quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity.


    General Information

    Units: 3-0-9
    Prerequisites: 2.111 / 18.435J / ESD.79
    Lectures: Tuesday & Thursday 11am-12:30pm, Room 36-153
    Textbook: Quantum Computation and Quantum Information, by Nielsen and Chuang
    Grading: Homework (4 problem sets) 40%, Project presentation 20%, Project paper 40%
    Schedule: Problem sets due Feb 14, Feb 28, Mar 13, Apr 03; Project proposal due Apr 17; Final project paper due May 15.

    Instructors: Prof. Isaac Chuang   26-251 ichuang@mit.edu
    Prof. Peter Shor 2-284 shor@math.mit.edu
    Office Hours: By appointment (just email...)
    TA:    Andrew Cross awcross@mit.edu
    Course secretary: Joanna Keseberg j_k@mit.edu

         
    Course Textbook
    Errata


    Syllabus

    [T 05-Feb] C Lecture 1: General introduction; Quantum operations
    [R 07-Feb] C Lecture 2: Quantum error correction - criteria and examples [PS#1 out]
    [T 12-Feb] C Lecture 3: Calderbank Shor Steane codes
    [R 14-Feb] C Lecture 4: Stabilizers ; stabilizer quantum codes
    [T 19-Feb] No class (Monday schedule) [PS#2 out, PS#1 due]
    [R 21-Feb] C Lecture 5: Stabilizers II ; computing on quantum codes
    [T 26-Feb] C Lecture 6: Concatenated codes ; the threshold theorem
    [R 28-Feb] C Lecture 7: CWS codes and non-abelian codes
    [T 04-Mar] S Lecture 8: Cluster state and measurement based quantum computation [PS#3 out, PS#2 due]
    [R 06-Mar] S Lecture 9: Measurement based QC, Abelian Topological QC
    [T 11-Mar] S Lecture 10: Non-abelian topological QC part I
    [R 13-Mar] S Lecture 11: Non-abelian topological QC part II [PS#4 out, PS#3 due]
    [T 18-Mar] S Lecture 12: Quantum algorithms: the abelian hidden subgroup problem ; Quantum Fourier Transform
    [R 20-Mar] S Lecture 13: The nonabelian HSP ; hidden shift problem
    [T 25-Mar] Spring Break
    [R 27-Mar] Spring Break
    [T 01-Apr] S Lecture 14: Quantum algorithm for the hidden dihedral subgroup problem
    [R 03-Apr] S Lecture 15: Entanglement as a physical resource
    [T 08-Apr] S Lecture 16: Channels I: Quantum data compression; entanglement concentration; typical subspaces [Project forms out]
    [R 10-Apr] S Lecture 17: Channels II: Holevo's theorem ; HSW theorem ; entanglement assisted channel capacity [ PS#4 due ]
    [T 15-Apr] C Lecture 18: Quantum protocols - quantum communication complexity ; distributed algorithms [Project forms due]
    [R 17-Apr] C Lecture 19: Quantum games
    [T 22-Apr] MIT Holiday: Patriot's day
    [R 24-Apr] C Lecture 20: Quantum cryptography
    [T 29-Apr] Lecture 21: Quantum Advice (guest lecturer: Scott Aaronson)
    [R 01-May] Project meetings
    [T 06-May] Project presentations
    [R 08-May] Project presentations
    [T 13-May] Project presentations
    [R 15-May] All final project papers due


    Handouts

    Syllabus (pdf)
    Problem sets:
    problem set 1 (pdf) solutions (pdf)
    problem set 2 (pdf) solutions (pdf)
    problem set 3 (pdf) solutions (pdf)
    problem set 4 (pdf) solutions (pdf)
    project proposal (pdf)
    Scribe notes:
    Lecture 1 (Andy Lutomirski)
    Lecture 2 (Jess Barber)
    Lecture 3 (Aman Chawla)
    Lecture 5 (Hyun-Sung Chang)
    Lecture 8 (Andrew Lutomirski)
    Lectures 8-10 (Andrew Lutomirski)
    Lecture 15 (Meagan Thompson)
    Lecture 17 (Meagan Thompson)
    Lecture 19 (Andrew Lutomirski)


    Useful Resources and other QCQI courses

  • Quantum Information Science @ MIT
  • quant-ph preprint archive at Los Alamos
  • Virtual journal of quantum information

  • Seth Lloyd's Introduction to Quantum Computation course 2.111 at MIT
  • John Preskill's Quantum Computation Course (and superb lecture notes) at Caltech
  • Umesh Vazirani's Quantum Computation course at Berkeley

  • Quantum Computation and Quantum Information Theory, Prof. Robert Griffths
  • Aarhus University Quantum Information Processing
  • Berkeley Quantum Computation
  • Bilkent University, Turkey Quantum Communications and Information Processing
  • BRICS, Denmark Quantum Computation Mini Course
  • Carnegie Mellon Quantum Computation and Quantum Information Theory
  • Hebrew University Jerusalem Quantum Computation
  • Imperial College Quantum Computing
  • McGill Advanced Cryptography
  • Weizmann Institute, Israel IAS Summer School


    This page has been accessed  times since August 02, 2001

    [ home ]