
Git Introduction for 6.270

What is git?

Git is a version control system – it allows you to save snapshots (or “versions”) of your code as
you work. That means you can easily restore a working version in case you accidentally screw
something up. And trust us, at some point this month you will completely bork your code.

Git also helps you share your work with your
teammates – instead of sending emails back and
forth with attachments like “NewestRealCode-
useThisVersion.zip” or
“SeriouslyUseThisVersion.zip”, you can simply
“push” your changes to the “cloud” (aka a team-
shared central repository hosted on Athena) and
your teammates “pull” the changes to their own
computer. If each of you has made changes to
different parts of the code, git will automatically
merge the changes when you “pull,” giving you the
latest version of the code.

Throughout the course of the month, the organizers
may make some tweaks to joyos in order to fix bugs
or add some features – git allows us to make
changes which you simply “pull” into your own
code.

The most important thing to remember about git is
that it's only useful if you take the time to use it properly. If you don't regularly commit and
push your changes when the code is working, git won't be able to help you when your
computer crashes or you delete your code by accident the night before the competition.

Installing git

If you already have git installed on your computer, skip ahead to “Get Joyos” below.

Windows
Get msysgit (http://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git/)

Select the following options if prompted during installation:
“Use Git Bash only”
“Use OpenSSH”
“Checkout Windows-style, commit Unix-style line endings”

Mac OS X

Git Introduction For 6.270
Scott Bezek, 2014 1

Side note: Why Git?

You might wonder, “why don't we just
use email/flash-drives/Dropbox to
share files? It seems a lot simpler.”
This is a good question – there are
several reasons that we use git:

1) Git makes it easy to grab the
newest code from the organizers,
without worrying about losing your
changes
2) You will almost certainly use a
version control system (VCS) like git in
industry, and it helps prevent losing
work if used properly
3) Git handles simultaneous edits
cleanly when multiple people work on
the same files

http://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git

Use the installer at http://code.google.com/p/git-osx-installer/downloads/list?can=3

Linux
sudo apt-get install git-core

Get Joyos

Windows
msysgit comes with a program called “Git Bash” which emulates a Linux terminal – by using
Git Bash you should be able to follow the Mac/Linux instructions below.

Mac/Linux
Open a terminal window.

If you're not familiar with using a terminal/console, see Appendix A.

Make sure your git username is set correctly (replacing the highlighted portions accordingly):
git config --global user.name “Firstname Lastname”
git config --global user.email “your_email@mit.edu”

Navigate to your home directory, and create a folder for 6.270 files:
cd ~
mkdir 6.270
cd 6.270

Now we set up a local clone of your team's repository:
git clone your_athena@linerva.mit.edu:/afs/athena/course/6/6.270/git/team0 joyos

Git will say:
Cloning into joyos...

You will likely also see:
The authenticity of host 'linerva.mit.edu (18.181.0.232)' can't be established.
RSA key fingerprint is 30:2e:20:bb:bf:84:70:4e:da:a7:33:bc:e8:20:c1:60.
Are you sure you want to continue connecting (yes/no)?

Type yes and press [Enter] (you can ignore the warning on the following line - “Warning:
Permanently added 'linerva.mit.edu' (RSA) to the list of known hosts.”)

Git will ask for your athena password - nothing will show up as you type:
Password:

You'll probably see a warning that the repository is empty – this is ok.
warning: You appear to have cloned an empty repository.

cd into the repository and configure it to know about the central joyos repository hosted on
GitHub:

Git Introduction For 6.270
Scott Bezek, 2014 2

http://code.google.com/p/git-osx-installer/downloads/list?can=3

cd joyos
git remote add joyos git://github.com/sixtwoseventy/joyos.git

Configure an editor for commit messages. We suggest 'open' on Mac (opens in TextEdit),
'gedit' on Linux, . You can use a more advanced editor like vim or emacs if you want.

Mac:
git config core.editor open

Linux:
git config core.editor gedit

Windows:
git config core.editor notepad

If you are the first person on your team to set up git, do the following:
Pull the latest version of joyos:
git pull joyos master

You should see output that looks like:
remote: Counting objects: 2636, done.
remote: Compressing objects: 100% (832/832), done.
remote: Total 2636 (delta 1794), reused 2579 (delta 1764)
Receiving objects: 100% (2636/2636), 4.99 MiB | 1.29 MiB/s, done.
Resolving deltas: 100% (1794/1794), done.

Push this to your team repository:
git push –-all

Password:
Counting objects: 2737, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (838/838), done.
Writing objects: 100% (2737/2737), 5.55 MiB, done.
Total 2737 (delta 1863), reused 2737 (delta 1863)
To sbezek@linerva.mit.edu:/afs/athena/course/6/6.270/git/team0
 * [new branch] master -> master

Understanding Git

Your 6.270 code folder is known as a working copy – this is a local copy of the code that you
can make changes to. Furthermore, there's a notion of tracked files - not all files within the
working copy are tracked by git. For example, the compiled output files (*.o files) are setup to
be ignored by git. You can track a file by using “git add filename”

When you have a version of your code that forms a logical milestone (e.g. you finally got your

Git Introduction For 6.270
Scott Bezek, 2014 3

navigation code working), you can commit those changes, which permanently saves a
snapshot of the tracked files, along with a description you supply (known as a “commit
message”). Unlike SVN (another version control system), git commits to a local repository,
not a remote one. This means you don't even need an internet connection to save a
checkpoint in your code. When you have one or more commits that you want to share with
your teammates, you can push those changes to your team's remote repository (which is
stored on Athena). Your teammates will pull those changes into their own local repositories,
which merges your changes into their working copy of the code.

Some useful commands:
Command Description

git status Displays the status of your git working copy – useful to see which
files you've changed and check to make sure all files are being
tracked

git add file1 file2 Tells git to track file1 and file2

git commit -a Commits all modified files – will open a text editor to type a
descriptive commit message

git push Push local committed changes to your team's shared repository

git pull Pull teammate's changes from the shared repository and merge
them into your own working copy (your local changes must be
committed or else git will complain when you pull)

git diff Show the difference between the latest committed version and the
current version of your working copy – useful to see what you've
changed since your last commit

git log Show a log of past commit messages

git show commit_id Show the changes made in the specified commit (the id will be a
hash value like “33b80ab204897ca4e683fa6214fbc3eda0fd24e3”,
although you can usually just use the first few characters to
uniquely identify it – e.g. “33b80”)

Restoring an old version from git

While the procedure isn't extremely difficult, it's nonetheless pretty easy to accidentally mess
up your repository while trying to restore an old version. We suggest you see an organizer/TA
to help with this process (they won't bite, I promise)

Git tutorial (recommended if you've never used a VCS before)

Make sure you've followed the directions above to get a copy of the joyos source code.

Git Introduction For 6.270
Scott Bezek, 2014 4

To demonstrate how version control works, each team member should create a new text file
with their athena name (e.g. “sbezek.txt”) in their 6.270 code folder.

cd ~/6.270/joyos/
touch sbezek.txt

Now we can check the status of our git repository:

git status

Notice that your new file is listed under “Untracked files”:

On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
sbezek.txt

Now edit the file and write something fun inside:

On a Mac On Linux:

open sbezek.txt gedit sbezek.txt

We have to let git know that we want to track this new file:

git add sbezek.txt

Commit those changes with a descriptive commit message:

git commit -a -m “Added a fun little file”

[master 4ddc8c3] Added a fun little file
 1 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 sbezek.txt

Push those changes to your team's repo (you will be prompted to enter your Athena password)

git push

If your teammates were faster than you, you may get a message that looks like:

To sbezek@linerva.mit.edu:/afs/athena/course/6/6.270/git/team0
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to
'sbezek@linerva.mit.edu:/afs/athena/course/6/6.270/git/team0'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the

Git Introduction For 6.270
Scott Bezek, 2014 5

'Note about fast-forwards' section of 'git push --help' for details.

In this case you need to pull your teammates' latest changes before you can push your own

git pull
git push

After everyone has committed and pushed their changes, make sure you pull the latest version

git pull

Git Introduction For 6.270
Scott Bezek, 2014 6

Appendix A: Using Terminal

The Terminal window allows you to run commands and programs on your computer in a
completely text-based environment. The basic principle of the terminal is that you are sitting
in a directory (the “present working directory” or “pwd”), from which you can navigate to
other directories, access files, and run programs.

When you open Terminal, you'll see something like this:

There are a couple things to note:
• “scott-macbook” is the name of my computer
• the text after the colon is the directory that you are currently in – here “~” represents

your home directory, which is “/Users/scott” on Mac or “/home/scott” on Linux.
• “scott” is my user name
• “$” is the prompt – it indicates you can enter a command to run

If you ever get lost in Terminal, you can type “pwd” and press [Enter]:

Git Introduction For 6.270
Scott Bezek, 2012 7

The current directory is printed on the next line (“/Users/scott”), and another command
prompt appears below it (“scott-macbook:~ scott$”).

To navigate to another directory, use the “cd” command (cd stands for “change directory”)
followed by the directory you want to switch to. For example, we can navigate to my
Documents folder by running “cd /Users/scott/Documents”:

There are 2 ways you can type a path:
• Absolute paths begin with a “/” which indicates your system's root directory. E.g.

/Users/scott/Documents
• Relative paths are specified relative to the current directory. E.g. if I'm currently

in /Users/scott, I can navigate to /Users/scott/Documents simply by typing “cd
Documents”

You can also use the special relative path “..” (two full stops) to indicate the parent directory.
For example, if I'm at “/Users/scott/Documents”, I can type “cd ..” to navigate to the parent
directory “/Users/scott/”. You can use this multiple times: from “/Users/scott/Documents/”
I can type “cd ../..” to navigate to “/Users/”

Helpful hint: when typing a path, you can press [Tab] to auto-complete. For example, after
typing “Doc” you can press [Tab] to complete it to “Documents”. If there are multiple files or

Git Introduction For 6.270
Scott Bezek, 2012 8

directories that begin with what you've already typed, you can press [Tab][Tab] to show a list
of all possibilities. E.g. typing “Do[Tab][Tab]” will show “Documents/ Downloads/” as the 2
options.

Git Introduction For 6.270
Scott Bezek, 2012 9

Git Introduction For 6.270
Scott Bezek, 2012 10

