
WHAT IS AN L-FUNCTION?

This handout is extracted from a forthcoming paper by David Farmer, Ameya Pitale,
Nathan Ryan, and Ralf Schmidt.

0.1. Tempered balanced analytic L-functions. Throughout the axioms, s = σ + it is a
complex variable with σ and t real.

A tempered balanced analytic L-function is a function L(s) which satisfies the three
axioms below.

Axiom 1 (Analytic properties): L(s) is given by a Dirichlet series

(0.1) L(s) =
∞∑
n=1

an
ns
,

where an ∈ C.

a) Convergence: L(s) converges absolutely for σ > 1.

b) Analytic continuation: L(s) continues to a meromorphic function having only
finitely many poles, with all poles [[ in σ > 0 ]] lying on the σ = 1 line.

Axiom 2 (Functional equation): There is a positive integer N called the conductor of
the L-function, a positive integer d called the degree of the L-function, a pair of
non-negative integers (d1, d2) called the signature of the L-function, where d =
d1 + 2d2, and complex numbers {µj} and {νj} called the spectral parameters of
the L-function, such that the completed L-function

(0.2) Λ(s) = N s/2

d1∏
j=1

ΓR(s+ µj)

d2∏
j=1

ΓC(s+ νj) · L(s)

has the following properties:

a) Bounded in vertical strips: Away from the poles of the L-function, Λ(s) is
bounded in vertical strips σ1 ≤ σ ≤ σ2.

b) Functional equation: There exists ε ∈ C, called the sign of the functional
equation, such that

(0.3) Λ(s) = εΛ(1− s).

c) Selberg bound: For every j we have Re(µj) ∈ {0, 1} and Re(νj) ∈ {12 , 1,
3
2
, 2, ...}.

d) Balanced: We have Im (
∑
µj +

∑
(2νj + 1)) = 0.

Axiom 3 (Euler product): There is a product formula

(0.4) L(s) =
∏

p prime

Fp(p
−s)−1,

absolutely convergent for σ > 1.

a) Polynomial: For every prime p, the Fp is a polynomial of degree at most d, with
Fp(0) = 1.
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b) Central character: There exists a Dirichlet character χ mod N , called the cen-
tral character of the L-function, such that

(0.5) Fp(z) = 1− apz + · · ·+ (−1)dχ(p)zd.

c) Parity: The spectral parameters determine the parity of the central character:

(0.6) χ(−1) = (−1)
∑
µj+

∑
(2νj+1).

d) Ramanujan bound: Write Fp in factored form as

(0.7) Fp(z) = (1− α1,pz) · · · (1− αdp,pz)

with αj,p 6= 0. If p - N then |αj,p| = 1 for all j. If p | N then |αj,p| = p−mj/2 for
some mj ∈ {0, 1, 2, ...}, and

∑
mj ≤ d− dp.

0.1.1. Comments on the terminology. The term balanced is described by Axiom 2d). The
summand “+1” can obviously be omitted from the condition, but we include it for uniformity
with Axiom 3c). If we omit the modifier ‘balanced’ when describing an L-function, then we
mean a function of the form L(s + iy) where L(s) is balanced and y ∈ R. If L(s) is a (not
necessarily balanced) L-function, then it is straightforward to check that there exists exactly
one y0 ∈ R such that L(s+ iy0) is balanced.

The term tempered refers to both the Selberg bound (Axiom 2c) and the Ramanujan
bound (Axiom 3d). Neither bound has been proven for most automorphic L-functions, but
if those axioms fail for an automorphic L-function, they must fail in a specific way arising
from the fact that the underlying representation in unitary. A precise description of the
possibilities is given by the unitary pairing condition .

In the functional equation, the function Λ is the Schwartz reflection of Λ, defined for
arbitrary analytic functions f by f(z) = f(x). The tuple (ε,N, {µ1, . . . , µJ}, {ν1, . . . , νK})
is the functional equation data of the L-function.

In the Euler product, the polynomials Fp are known as the local factors , and the recip-
rocal roots αj,p are called the Satake parameters at p. If p | N then we say p is a bad
prime, and if p - N then p is good . By Axiom 3b), if p is good then dp, the degree of the
local factor at p, equals d, and if p is bad then dp < d.

It follows straight from the definition that if L1(s) and L2(s) are analytic L-functions then
so is L1(s)L2(s). And if both L1 and L2 are balanced, or tempered, then so is their product.
If the analytic L-function L(s) cannot be written nontrivially as L(s) = L1(s)L2(s), then we
say that L is primitive . Here ‘nontrivially’ refers to the fact that the constant function 1
is a degree 0 L-function. It follows from the Selberg orthogonality that L-functions factor
uniquely into primitive L-functions:

Theorem 0.8 (Conrey and Ghosh). Assume the Selberg orthogonality conjecture. If L(s) is
an analytic L-function then

(0.9) L(s) = L1(s) · · ·Ln(s)

where each Lj is a nontrivial primitive analytic L-function. The representation is unique
except for the order of the factors.

Selberg conjectured that two primitive L-functions which are not equal must be “orthonor-
mal” in the following sense.
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Conjecture 0.10 (Selberg). If L1(s) =
∑
ann

−s and L2(s) =
∑
bnn

−s are primitive ana-
lytic L-functions, then

(0.11)
∑
p≤X

apbp
p

= (δL1,L2 + o(1)) log logX,

where δ is the Kronecker delta:

(0.12) δa,b =

{
1 if a = b

0 otherwise.

The conjecture has important consequences. For example, if L(s) = Ln1
1 (s) · · ·Lnm

m (s) =∑
ann

−s with Lj(s) primitive, then

(0.13)
∑
p≤X

|ap|2

p
∼ (n2

1 + · · ·+ n2
m) log logX.

So by looking at the average value of |ap|2 for a given L-function, you can tell if it is primitive,
and if it isn’t, then you know something about how it might factor.

If two L-functions have enough local factors in common, then they must actually be the
same function. The following is a weak version of this result, but it is sufficient for this
discussion.

Theorem 0.14 (Strong Multiplicitly One (SMO)). If

(0.15) L1(p) =
∏
p

F1,p(p
−s)−1 and L2(p) =

∏
p

F2,p(p
−s)−1

are L-functions, and F1,p(z) = F2,p(z) for all but finitely many primes p, then L1(s) = L2(s).
In particular, the bad local factors, conductor, sign, and Γ-factors are all determined by the
good local factors.

0.2. Operations on L-functions. We describe ways to turn an L-function, or a collection of
L-functions, into another L-function. For automorphic L-functions, many of these operations
have been shown to produce L-functions. We describe the operations purely in terms of the
axioms for analytic L-functions, but in many cases the analytic continuation and functional
equation of the resulting object are conjectural.

In this section we generally omit the adjectives ‘tempered,’ ‘balanced,’ ‘analytic,’ and
‘arithmetic,’ with the understanding that whatever properties apply to the input L-function(s)
also apply to the output L-functions(s).

0.2.1. Dual. If L(s) =
∑
ann

−s is an L-function then so is the dual L-function L(s) =∑
ann

−s. If L has functional equation data (ε,N, {µ1, . . . , µJ}, {ν1, . . . , νk}) then L has
functional equation data (ε,N, {µ1, . . . , µJ}, {ν1, . . . , νk}) An L-function L(s) is self-dual
if L(s) = L(s), which is equivalent to the L-function having real coefficients.

0.2.2. Rankin-Selberg convolution. Suppose

L1(s) =
∑

ann
−s =

∏
p

1

(1− α1,pp−s) · · · (1− αd1,pp−s)
(0.16)
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and

L2(s) =
∑

bnn
−s =

∏
p

1

(1− β1,pp−s) · · · (1− βd2,pp−s)
(0.17)

are L-functions of degrees d1 and d2, respectively. Recall that the above local factors are
valid for all p, but if p is a bad prime then some of the αj,p, respectively βj,p, are zero.

The Rankin-Selberg convolution of L1 and L2, denoted L1 × L2, is given by an Euler
product whose good local factors are given by

(0.18) FL1×L2,p(z) =

d1∏
j=1

d2∏
k=1

1

1− αj,pβk,pz
.

If p is good for both L1 and L2, then it is good for L1×L2. If L1×L2 is an L-function, then by
SMO the bad Euler factors and the functional equation parameters are uniquely determined.
There is no simple recipe to determine all those invariants of L1×L2 directly from the data
for L1 and L2, but the determination of the Γ-factors is relatively straight-forward, as is the
determination of those bad factors which have a particularly simple form.

0.2.3. Symmetric and exterior powers. If

(0.19) L(s) =
∑

ann
−s =

∏
p

1

(1− α1,pp−s) · · · (1− αd,pp−s)

is an L-function of degree d, then (conjecturally) we can make new L-functions from it:
The exterior square L-function :

(0.20) LS(s, ext2) =
∏
p good

∏
1≤j<k≤d

(1− αjαkps)−1,

which has degree d(d− 1)/2, and the symmetric square L-function :

(0.21) LS(s, sym2) =
∏
p good

∏
1≤j≤k≤d

(1− αjαkps)−1,

which has degree d(d + 1)/2. Here the partial L-function LS(s) is L(s) with the bad fac-
tors removed. By SMO, LS(s) determines (in a non-effective way) everything about the
L-function.

Note that L× L(s) = L(s, ext2)L(s, sym2).
It might look like L(s, ext2) is a factor of L(s, sym2), since the good local factors of

L(s, ext2) appear within the good local factors of L(s, sym2). But things don’t work that
way, and usually L(s, sym2)/L(s, ext2) will have a pole at each zero of L(s, ext2). Most Euler
products are not L-functions.

One can also take higher symmetric and exterior powers.

0.3. Exercises. If p is good then
ap(L1 × L2) = ap(L1)ap(L2)
ap(ext2) = a2p − ap2 = the coefficient of z2 in Fp(z)

ap(sym2) = ap2
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